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1 ABSTRACT 
 

Large-scale optimization has been a subject of investigation for over 50 years, but the challenge 

of making it useful in practice has continued to the present day. Initially the primary difficulties were 

posed by computation. But as computational needs were addressed by breathtaking increases in 

computer power and algorithm sophistication, the more serious difficulties came to be posed by 

representation. Again the challenge was eventually met, by increasingly sophisticated modeling 

languages and systems.  

The primary difficulty of large-scale optimization has now shifted again, to one of 

communication. Currently there exist of a plethora of optimization algorithm implementations, 

various formats to represent optimization problems and heterogeneous mechanisms to communicate 

with optimization components. Besides, there are plentiful research initiatives in developing 

supporting tools to analyze and benchmark optimization problems and solvers. Moreover different 

optimization components are implemented in different programming languages and located on 

different operating systems all over the network.  

In this project, I will analyze the above issues under two real world scenarios. One is Motorola’s 

Virtual Prototyping Intelligent Optimization System that I have participated in designing over the past 

3 years, led by Thomas Tirpak at Motorola Advanced Technology Center. The other is Argonne’s 

National Laboratory’s Network Enabled Optimization System, which has been developed by 

researchers at Optimization Technology Center led by Robert Fourer and Jorge Moré.  

We propose a general design for distributed optimization architecture to bring together the 

seemingly significantly distributed optimization systems. The general design will serve as the basis 

for our unified framework introduced under our concept of “Optimization Services”, intended as 

guidance for designing future Optimization Services components and next-generation optimization 

systems. The introduction of Optimization Services framework can be regarded as an initiative to start 

a wider level of cooperation to move toward a final standardization and facilitate a healthier 

development environment for research in the area of Operations Research.  
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2 BACKGROUND AND INTRODUCTION 
 

Large-scale optimization has been a subject of investigation for over 50 years. But the challenge 

of making it useful in practice has continued to the present day. Initially the primary difficulties were 

posed by computation, but breathtaking increases in computer power and algorithm sophistication 

combined to allow for routine solution of large problems arising in practical applications [4]. As 

computational needs were addressed, the more serious difficulties came to be posed by 

representation, as modelers found that they could solve larger problems than they could manage or 

understand [24]. This challenge, too, was eventually met, by increasingly sophisticated modeling 

languages, and systems for describing and working with optimization problems [17][37]. 

 The primary difficulty of large-scale optimization has now shifted again, to one of 

communication. Increasing numbers of optimization algorithms are implemented increasingly well, 

but prospective users are unaware of these “solvers” or do not see the potential benefit that would 

justify obtaining and installing them. Only certain combinations of solvers and modeling systems 

work with each other, moreover, and modeling language support is slow to keep up with solver 

extensions to new problems types.  
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2.1 A Real World Example (Motorola) 
 

In 2001, I helped design an optimization service (though the term “optimization service” was 

loosely defined then), based on a modified feasible direction algorithm [41] for the Virtual 

Prototyping (VP) group [48], led by Thomas Tirpak at Motorola Advanced Technology Center 

(MATC). The service, along with the development of several optimization solvers including linear 

and integer programming types was later integrated into the Virtual Prototyping system. The service is 

intended to solve general large scale nonlinear constrained optimization problems with discrete 

variables. This optimization service has since proved to be of great value to the Motorola engineering 

community. It has been applied in areas like print wiring board panel layout problem and embedded 

passives selection in circuit board design and has helped achieve great cost reductions. 

At the beginning, the VP optimization service was only applied in single and local domain model 

services, i.e., the objective function is calculated by one model service that is located on the same 

machine as the optimization service. But in the real world, an objective function can consist of metrics 

from multiple and distributed model services, as illustrated in Figure 2-1.  

The objective f of the optimization service is comprised of metrics yi’s calculated from the 

corresponding service i. The variable set x is shared among all the services. The arrows indicate flow 

of information for iterations throughout the optimization. At the higher level is the optimization 

engine or solver that, at each iteration, suggests new values for the variable set x to individual model 

services. At the lower level are the model services that supply the objective functional values, yi(x) 

and constraint functional values, gi(x). In nonlinear optimization, which goal is to find a local 

minimum or maximum, it is possible to generate an improved solution just by knowing the numeric 

values of the objective and constraint functions at current iteration.  

 

 
Figure 2-1: Dataflow of optimization with metrics calculated from distributed services 
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The problem of multidisciplinary optimization (MDO) with an objective function that 

incorporates metrics calculated by distributed model services arises from an ambitious multistage 

effort to develop and deploy enterprise-wide, suites of state-of-the-art tools that drastically reduce the 

cycle time for new or improved designs and technologies. The principal feature of this effort is the 

integration of design and development processes among various disciplines, e.g., mechanical 

engineering, electrical engineering, environment engineering, manufacturing, supply chain, etc.  

In §1 we will address in detail the issues that we encounter in developing such a multidisciplinary 

optimization system from the perspective of scheduling procedure; and in §4 from the perspectives of 

architecture design and communication framework.   
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2.2 Another Real World Example (Argonne) 
 

The Internet is now providing an increasingly practical way of addressing communication 

problems in large optimization [28]. Websites offer abundant solver information [25], to be sure, but 

the more significant advance is the ability to send optimization problems over the Internet for 

submission to a solver at some remote site. The remote optimization “server” can address numerous 

problem types and can provide varied solvers for problems of each type, giving modelers much more 

of a choice than they could hope to have locally. In previous work under the auspices of Optimization 

Technology Center (OTC) co-directed by Robert Fourer at Northwestern University and Jorge Moré 

at Argonne National Laboratory since its founding in 1994, member researchers have studied and 

experimented with the concept of an optimization server through the creation of the Network Enabled 

Optimization System (NEOS) Server [11][14][34].  

The continuing goal of the NEOS project is to make optimization a part of the worldwide 

software infrastructure that supports science and commerce. To this end, the NEOS Guide 

(http://www-fp.mcs.anl.gov/otc/Guide) includes online examples of optimization problems, listings of 

test problem collections, and surveys of publications and software. The complementary NEOS Server 

(http://www-neos.mcs.anl.gov) provides remote access to solvers and so is the focus of this project.  

The NEOS Server currently supports nearly 70 solvers. Collectively these solvers accept about a 

dozen different kinds of input, ranging for example from function definition in programming 

languages (Fortran, C, Matlab) to explicit problem instance descriptions (MPS, LP, sparse SDPA) to 

symbolic modeling language descriptions (AMPL [26], GAMS [6]). A callable interface, Kestrel [13], 

also permits direct access to many of the NEOS solvers from within modeling systems’ environments.  

Usage of the NEOS Server (Figure 2-2) has grown to an average level of about 10000 

submissions per month; peak loads of 5000 in a week have been handled without difficulty. 

Submissions have, however, leveled off a bit in the past few months; this has motivated us to direct 

some of the proposed research, particularly in §4, toward making the Server easier to use for those 

who are not solver experts.  

The current NEOS Server only begins to address the communication difficulties of large-scale 

optimization, however. The Server cannot tell users which solvers are appropriate for a problem that 

has been submitted, or choose a solver host based on the expected resource needs of a problem. 

Connections from modeling languages to solvers are still incomplete, and support for benchmarking is 

limited. Because NEOS has evolved along with the Web and the Internet – its first interface, through 

e-mail, dates back to 1996 – it is limited to some degree by early design decisions.  

 

 

 

http://www-fp.mcs.anl.gov/otc/Guide
http://www-neos.mcs.anl.gov/
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Figure 2-2: Monthly total submissions to the NEOS Server since 1999. “Internal” submissions 
are those from the domains of Argonne (anl.gov) and Northwestern (nwu.edu). 
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3 TWO DISTRIBUTED OPTIMIZATION SYSTEMS 
 

In this section we will discuss two distributed optimization systems – Motorola’s Virtual 

Prototyping (VP) Intelligent Optimization System (§3.1) and Argonne National Laboratory’s Network 

Enabled Optimization System (NEOS, §3.2). Issues in designing and implementing the two systems 

will be raised and discussed in detail. The two seemingly significantly different systems provide us 

with the motivations for a general and unified design and framework for distributed optimization. As 

will be seen in §6, these two systems can be viewed as special cases of our general design of 

distributed optimization architecture. Our general and unified design and framework (see §4) is 

intended to resolve the issues regarding architectures, communications, and representations and help 

build robust optimization over distributed systems. 
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3.1 Motorola VP Multidisciplinary Intelligent Optimization System 
 
3.1.1 General Background 
 

The VP optimization system is a critical step in a multistage effort to develop and deploy 

enterprise-wide, suites of state-of-the-art tools that drastically reduce the cycle time for new or 

improved designs and technologies. The principal feature of this effort is the integration of design and 

development processes among various disciplines. The goal is to plan, design, construct and manage 

knowledge-based systems for the transfer, application and execution of knowledge, usually highly 

specialized. The main economic benefit is to be realized in terms of reduced engineering effort for 

new product ideas, improved compliance with standard design and development rules, and more 

optimal design and development trade-offs.  

3.1.2 Knowledge Flow 
 

Knowledge derives originally from customers, who express in the form of specifications of their 

needed product. The specifications are likely to encompass a wide area of engineering domains such 

as electronic engineering, mechanical engineering, material engineering and manufacturing. These 

specifications are distributed to the corresponding engineering departments or groups for proof-of-

concept designing or prototyping. Without the Multidisciplinary Intelligent Optimization System, the 

engineering solutions that have been developed in a separate manner finally are combined together 

into a complete prototype in a more or less mechanical way. If the solutions have a so-called 

“technical interface” conflict, then they are sent back for reengineering. Such a process goes on for 

several rounds mainly in a time-consuming trial and error mechanism with many inter-departmental 

or group meetings until the final complete product is free from design conflicts.  

In contrast, the optimization system takes the responsibility of coordinating the design solutions 

that originate from separate departments, finds a feasible solution and possibly optimizes within the 

feasible choices to find the best combination of design. As shown in Figure 2-1, the optimization 

system architecture leverages on knowledge flow in the real engineering world. The system is broken 

up into two levels. The higher level is the one that assumes the role of coordination and the lower 

level is all the individual functional modules or simulation services that keep on feeding their separate 

solutions to the higher level. 

3.1.3 Properties of the Model Services  
 

Optimization services and solvers mostly need users to submit all the data of the problem, at least 

including mathematical formulas for objectives and constraints. Such requirements cannot be met due 

to the properties of our model services:  

1. The final objective and constraint functions consist of multiple services.  
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2. Many model services are located remotely. Local copies cannot be easily duplicated due to 

various reasons. For example, the model service may be tightly coupled with a database 

system.  

3. Some model services are so complicated that no simple mathematical representation can be 

formulated.  

4. Some of the model services are proprietary and thus their formulas cannot be revealed. 

5. Most importantly, some model services do not return results instantaneously (see §3.1.4). The 

delays make it difficult to integrate the model services into the optimization solver.  

3.1.4 Initial Modeling of Computational Complication 
 

In our modeling (Figure 3-1), different optimization solvers are extended from a standard 

optimizer interface. All solvers interact with optimization problems with a common interface. The 

optimization problem interface is connected with a simple accelerator, which purpose is to simulate 

the behavior of remote services, and provide estimated function values to the solvers locally, thus 

avoiding networking anomalies. Each remote service has a corresponding local optimization problem 

client connected with the interface.   

Model services are simulated with arbitrarily chosen and relatively simple functions they are 

initiated in separate process threads. Though the simple function value calculations take no time to 

complete, different time factors are realized by forcing each process thread to sleep or wait according 

to the parameters specified for each service, before the function values are returned to the 

optimization solver. To speed up the modeling process, all the time units are scaled down to 

milliseconds.  

The time for a model service to execute may depend on a variety of factors, e.g., the computer on 

which the service is running, the time of day, the complexity of the scenario represented by the inputs 

(x), etc. Services may be unavailable at certain scheduled and/or unscheduled times; there may be a 

delay in transmitting the inputs to the services and/or the outputs from the services or even the model 

service may itself be an optimization process. 

The model services in Motorola’s Virtual Prototyping System can be characterized mainly 

according to three factors, which determine the time each optimization iteration takes:  service time, 

server load factor, and down time. Down time includes when the server computer is down, when there 

is a bug in the model service software, and/or when there are difficulties running the service for a 

given set of inputs (x). Communication time between the optimization engine and model services is 

insignificant. An optimization can easily take thousands of iterations. If each iteration takes a long 

time due to the above factors, it may become impractical to solve the whole optimization within a 

reasonable amount of time.  
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Figure 3-1: Architecture of Proof-of-Concept Modeling of Optimization with Metrics Calculated 
from Distributed Simulation Services. 

 
Moreover when engineers in other areas design and construct their model services, they do not 

have the intention that their models will later be used as parts of an optimization system. Therefore, 

these model services usually do not provide gradient information. The optimization solver has to be 

based on a direct method, that is, an algorithm not using derivatives.  

Benchmarking has been conducted on different optimization algorithms, and a method based on 

Powell’s algorithm [45] with quadratic step length estimation was tested and implemented in the 

prototype modeling system.  

Our initial tests have proceeded as follows. Benchmark problems are first tested with their 

objective functions unbroken and statistics are collected for comparison with later tests in the 

distributed system. Then the objective functions are arbitrarily divided into several parts and 

put on different machines communicating based on the TCP/IP networking protocol. The 
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server, where the optimization solver is located, sends the current variable values to each 

machine for a functional evaluation and waits till it gets all the responses. It then gathers the 

functional values and integrates them into a whole function for the optimization solver to 

conduct the next iteration step. Primitive estimations or acceleration techniques, for example 

quadratic fitting, smoothing splines, have been used. Estimation of execution time is given by 

the following formula and data: 

T = (Ts ) (LF(t)) + DT,                                  (Equation 3-1) 

Where: 

Ts = Service time for a given server 

LF(t) = Load factor as a function of time (t) 

DT = Down time.   

Three kinds of services with typical behaviors are identified:  

Service A:  

Ts = Uniform distribution [6, 30] seconds. 

LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise. 

DT = 5% probability of the service going down for 30 seconds. 

• This service has automatic “crash detection” and recovery; therefore, the maximum 

down time is 30 seconds. 

Service B:  

Ts = Uniform distribution [30, 60] seconds. 

LF(t) = 1.25 from 0600 to 1400 hours; 1.0 otherwise. 

DT = Insignificantly small. 

• This service runs on a dedicated server; therefore, the load factor does not change 

significantly during the day. 

• The down time is insignificant, because this service runs on dual servers, and the 

robustness of the model service software has been proven. 

Service C:  

Ts = Uniform distribution [30, 90] seconds. 

LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise. 

DT = 1% probability of the service going down for anywhere between 15 minutes and 16 

hours.  

Through our initial modeling, we have shown that without any estimation and acceleration 

techniques, the optimizations in distributed system are solved with the same accuracies and same 

number of iterations, but the time taken to solve each problem is significantly longer, since the 
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optimization solver always has to wait for the last and slowest machine to respond with a functional 

value.  

Acceleration techniques often result in less total optimization time, with relatively the same 

accuracies achieved. But these improvements are not guaranteed on any functions. The improvements 

are not even guaranteed on different starting points of the same function, since the response surfaces 

can behave very differently in various neighborhoods. Our primitive acceleration techniques also do 

not take account of networking anomalies. When a model service generates mathematical errors (e.g. 

divide by zero), network becomes congested, or the server that hosts the model service crashes, our 

optimization process is terminated too. All these suggest further research in a better design and more 

robust scheduling procedure.    

3.1.5 An Approach on Robust Design of Distributed Optimization 
 

The next sections introduce our research effort on more advanced architecture and intelligent 

methods of search and acceleration. Special procedures are being developed along with optimization, 

in areas of statistical learning and artificial intelligence including data mining and machine learning. 

The real world challenge is how the optimization engine should simultaneously use information about 

information such as rate of improvement of the objective function and the computational performance 

characteristics of a set of distributed model services, to efficiently manage the evaluation of the 

objective function, so that the “best” solution can be found in the “shortest” possible time. 

3.1.6 Design and Architecture 
 

Figure 3-2 shows the Virtual Prototyping Multidisciplinary Intelligent Optimization System. The 

upper right part of the figure is the solver architecture. Listed are the major component modules. 

Remote Central Server – This is mainly used to connect to different distributed services offered 

by the Virtual Prototyping System, and maintain administrative routines.  

 Simulation Engines – These contain the major Virtual Prototyping services in different 

engineering domains.  

 Model Constructor – This part is used to dynamically construct multidisciplinary models that 

consist of services offered in the Virtual Prototyping system. It is mainly used to construct multi-

objective functions and constraints.  

 Client – This is usually any engineer who wants to use the services connected through the central 

server. From the client’s view, model constructor is simply another simulation model.  

 



NORTHWESTERN UNIVERSITY                                                                                          MA  
 

17

 

Figure 3-2: Architecture of the VP Multidisciplinary Intelligent Optimization System  

 
Following are the modules related specifically to the solver architecture.  

Solver – This module contains optimization solvers of different types, including linear 

programming, nonlinearly constrained programming, integer programming, etc.  

Solver Interface – This is a generic interface that is connected to the remote central server. All 

solvers have to interact with this interface if they need function values from simulation services 

offered through the central server. It also helps generate gradient information such as Hessian 

matrices needed by the gradient-based solvers.  

Statistics Data – This module keeps track of run time information through the entire 

optimization process, for example, the time it takes to get a response from one of the simulation 

engines.  

Real Opt – This is the module that routes solver requests to real simulation engines.   

Assistant Opt – This is the module that routes solver requests to a set of “intelligent” 

components and surrogates for optimization acceleration and robustness.  

Analyzer/Decider – This is the module that Assistant Opt uses to branch to different 

optimization processes.  
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Opt Storage – This is actually an interface that provides accesses to retrieval and storage of 

online optimization data, for example the variable points and objective values on the optimization 

path. 

Hash Table – This is basically a database that stores all the evaluated variable points in a special 

way.  

Surrogate – This is the module that acts as an approximate deputy for a simulation model.   

Processed Data – This module is a data structure that processes the data stored in Hash Table 

into a format accessible by Surrogate Learner.  

Learner – This module takes the processed data from Hash Table, and learns functions that 

approximate response behaviors of the simulation engines.  

Estimator – This module takes the learned function from Learner and responds to the solver 

with an estimated function value.  

Opt Thread – The purpose of Opt Thread is that solver does not need to wait or just wait a short 

time for a response from simulation engines because it is launched as a separate process from the 

general optimization process. On one hand function values are still to be returned. Solver can just 

carry on its iterative optimization progression. One main advantage is that when a simulation engine 

returns an error, the thread can simply be aborted without affecting the solver process.  

3.1.7 Service Requirements and Non-generic Solutions 
 

In designing an intelligent multidisciplinary optimization system that involves pre-built or legacy 

simulation engines never intended to be optimized and distributed all over the network, the following 

major issues need to be solved for any optimization process. Due to the lack of a universal standard 

and framework, many of the design issues are solved on an ad hoc base. Many of these serve as a 

motivation for a general design and framework for distributed optimization. 

· Initial Design Generation 

This serves as the initial point for a nonlinear optimization. But not all the simulation engines 

provide such information. A set of quadruples are required of each variable in the form of 

(default value, mostly likely value, lower bound, upper bound), after consulting with domain 

engineers. Default values can be customized for each optimization run by the client. In case when 

multi-start optimizations are carried out [38], distribution functions (for example triangular 

distribution based on mostly likely value, lower and upper bounds) can be used to generate 

different starting points.   

• Common Variable Resolution 

Different simulation engines are implemented in individual domains, without exchanging 

information with each other. As a result, names of parameters and variables are different even 

though they refer to the same specifications. Originally, the situation is handled by constructing 

interdisciplinary constraints forcing different variables to be of the same values. But the 
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optimization problem size is unnecessarily large due to redundant variable declarations. An 

overhaul thus has been carried out on all the simulation engine implementations to find common 

variables. To match all the different names to a standard naming, a static “paring” table has been 

constructed to support the Model Constructor module in Figure 3-2, so common variables are 

detected and variables are declared only once. But still other issues exist.  

Clients may be unaware of the common variable situations by supplying different default 

values to two differently named copies of the same variable. In cases like these, model 

constructor takes the average of the two default values. Most likely values, lower and upper 

bounds may also assume different values when a single domain simulation is run. When 

constructing a multi-domain model, the largest lower bound, the smallest upper bound, and the 

average of the mostly likely values are assumed by the model constructor.   

• Objective Construction 

Multidisciplinary objective function usually takes the form of a weighted sum. Different 

simulation engines are chosen by the clients and corresponding weights are specified. Weights 

are solely based on a subjective judgment base reflecting importance of different simulation 

metrics deemed by the client. But the client has to tell whether a smaller value or a bigger value 

of a metrics is better or not, so that model constructor can build a consistent maximization or 

minimization objective function. Metrics of different simulation engines are of different unit, 

thus the constructed multi-objective function is unitless and only useful for relative comparisons. 

Meaningful reports for each simulation are constructed based optimal variable values. Metrics of 

different simulations engines are of different scales. Normalization techniques such as 

arctangential and sigmoidal transformation are taken to bring component metrics on to the same 

scale.  

• Constraint Enforcement 

Constraints of the multi-disciplinary optimization are a combination of all constraints from 

individual domain constraints of each simulation and all variable boundaries. All the 

interdisciplinary constraints are hard coded in an assistant module that accompanies the Model 

Constructor module. The Model Constructor module first detects which simulation engines and 

which variables are chosen, and it then incorporates into the optimization model the 

interdisciplinary constraints that contain the simulations and the variables.  

• Result Interpretation 

Though Motorola has a proprietary data format to standardize results from different 

simulation engines, but they were never intended to be combined with each other to, say construct 

a multi-objective function. Name confliction is one major issue. Efforts have to be taken in setting 

distinctions between names. One way is to rename, but this causes tremendously many 

unforeseeable bugs. The other way is to group results into subsections and use combination of 
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simulation names, subsection names and result names. This issue will be elegantly solved by the 

introduction of XML namespaces as we will see in our general design and framework.  

Another issue, though not as often, is that results can be discrete. During any hill-climbing 

type of optimization, these situations can cause optimization solvers to immediately claim a local 

minimum or maximum. One technique used is a smooth interpolation of the previous results. 

When using a learning technique that tries to estimate the function smoothly, as introduced in 

§3.1.8, this problem is naturally avoided. Another technique is on a situation by situation base. In 

one circumstance [51], we added an “interdisciplinary” objective term, as a secondary objective, 

to make the discrete function continuous. All the interdisciplinary objective terms are hard coded 

in an assistant module that accompanies the Model Constructor module. The Model Constructor 

module first detects whether the simulations that have discrete objectives are chosen, and then 

incorporates into the optimization model the corresponding interdisciplinary objective terms.  

• Process Coordination 

Requests for results from distributed simulations are all launched in parallel, instead of 

sequentially. The simplest coordination technique is to wait for all the processes to finish by 

putting a barrier at the end of all the request calls. Other typical techniques are also employed 

depending on situations. Any major text books on designing and building parallel programs cover 

some most popular and practical algorithms, see [20]. For our purpose in Virtual Prototyping, 

most of the time, the multi-objective function can only be constructed with the returns of all the 

component objectives from distributed simulations, robust design with some acceleration 

techniques are needed for further speed up. This will be discussed in §3.1.8.      

Client may happen to choose simulation engines that do not share variables and constraints. In 

situations like these, separate optimization processes are launched for each individual simulation 

in parallel. And results are combined finally according to the client’s multi-objective construction. 

• Queue/Sequence Arrangement 

All processes cannot just be launched in a parallel version. Some simulations (e.g. [50]) may 

contain variables that are results from other simulations (e.g. [51]).  Flows are hard coded when 

the Model Constructor encounters a combination of simulations that need to in sequence. 

Processes that have to wait for results from other processes are waited in a queue to be notified 

later. Some kind of standard service flow coordinating system is needed here. 

• Input Parsing/Output Reporting  

All input parsing and output reporting are specified in a Motorola proprietary format. 

Though standardized, yet complicated enough to be understood by just a few. It was not built for 

multi-disciplinary optimization constructions. Special efforts have to be taken to scale it up for 

accommodations. In the case of process sequencing, where one simulation’s variable takes a 

value from another simulation’s result during run time, the effort is extremely laborious. In the 
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case of generating reports of multidisciplinary results and mapping multi-dimensional space onto 

two-dimensional graphs, the procedure is even more painstaking. 

3.1.8 Procedure and Reasoning 
 

Figure 3-3 shows the processes of an entire intelligent optimization system, in an effort to build a 

robust distributed optimization system, with reasonable accelerations. 

Normal Flow 

On the left part of the figure are processes (Processes 0-10) with bold borders that represent a 

normal nonlinear optimization flow: roughly starting with an optimization problem instance, entering 

an iterative process of finding directions and step lengths, updating variables and terminate and return 

results based upon certain conditions. The major characteristic in this flow is that processes 2 and 5, 

when requesting a function value to determine directions and step lengths do not get them locally. 

Instead they have to go through process 11, the solver interface, which when no intelligence is needed 

in Process 12, always goes through the central server (process 13) and asks its connected simulation 

engines (process 14) to return function results F(x).   

Processes on the right part of the figure (Processes 15-25), with dotted borders represent the 

intelligent components. Notice the total separation between the solver and the intelligent part. None of 

the intelligent components are built within the solver, that is, the optimization algorithm remains 

untouched. The idea is that any Virtual Prototyping solver can leverage on the intelligent system with 

no alteration and also any intelligent system that is compatible with the solver interface can be 

plugged with no extra effort. Solver interfacing will be unified in our general design and framework 

introduced in §5, so under the framework, any supporting tool suite can be integrated with solvers 

seamlessly.  

Processes 2 and 3 are intended to find moving directions. A large number of requests are made to 

obtain information on function values and gradients in all variable dimensions. Thus arrows leading 

out of process 2 and leading into process 3 are in bold. Processes 5 and 6 are intended to find step 

lengths along the decided moving direction. Relatively much smaller number of function requests is 

needed. Functional evaluations are computationally expensive in our distributed optimization 

scenario. Thus the specific solver that we favor has a loop back mechanism from process 6 to process 

4, intended to do a very accurate linear search on step length. In practice, all the loops combined to 

find a step size take a fraction of time of finding a direction. 

The major decision branching is Process 12. If no intelligence is needed, it goes through a regular 

distributed optimization process. Otherwise, it leverages on the estimation and acceleration techniques 

in the intelligent part. Process 15 is used to store evaluated data in the Hash Table module. It can be 

turned off when no intelligence is needed. 
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Figure 3-3: Flowchart of intelligent optimization process 

  



NORTHWESTERN UNIVERSITY                                                                                          MA  
 

23

Intelligence Flow – Analysis  

When intelligence is tuned on, the process always goes through an Assistant Opt module 

(Process 16).  

The first thing that an Assistant Opt module does is to analyze statistics of run time information, 

including:  

• those related to optimization process, for example current iteration number, variable change 

rate, objective convergence rate, constraint improvement rate 

• evaluated data points in database 

• finishing status of a simulation  

• time it takes between requests and responses of a simulation over recent iterations 

• access types of recent runs – retrieved through database, estimated through an approximate 

function, or evaluated by the real simulation engine 

• last global and local learning time of the function learners 

• accuracies of function learners through validation between estimated value and real value 

Statistics are constantly updated on finishing of corresponding processes that provide such 

information.  

Intelligence Flow – Learning  

Process 18 is a decision to learn a function based on all the collected points that have been 

evaluated by real simulation engines so far. The decision to learn a function is based on one fact, 

namely when there are enough new data points. The choice of the number of data points is quite 

empirical. It can be further studied and on an adaptive base. All learners are launched in separate 

processes, so that the flow can move on to the next three decisions (Processes 22, 23, 24).  

Two types of learning are used. The global learning is intended to learn the entire function 

surface, while the local learning is used to learn the function surface in the neighborhood of the 

current variable point. In general learning takes various forms. Complex learning like Neural 

Network, Gene Programming, though potentially more accurate, can take time comparable to the 

optimization process itself. Motorola Advanced Technology Center has developed some advanced 

though proprietary or patented learning tools that take a short time, which the intelligent optimization 

system leverages on. But the main purpose here is not to describe the algorithms inside these tools. 

The intention is to illustrate that with the help of well designed learning tools that are properly 

coordinated with an intelligent optimization system, decent acceleration can be achieved. In addition 

to the proprietary tools, a range of other algorithms are incorporated into our stack of learning tools. 

Learning tools are grouped into global learners and local learners separately. In practice, local learners 

are relatively fast.  

Global learners include standard statistic regressions, neural network, gene programming, etc. 

Global learners are launched when an optimization first starts. Leaning or training process is stopped 

sooner at the beginning, but the allowed learning time gradually increases. The purpose is to generate 
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a big picture and roughly smooth shape (that is, not over-fitting) of a function, so optimization can 

move in a generally correct direction. As data points accumulate, we increase learning time and 

finally as convergence slows down, we switch to launching local learners. Global and local learners, 

in our optimization system, are launched separately. 

Local learners include basis expansions methods such as smoothing splines, kernel methods such 

as local linear or polynomial regressions and variants of nearest-neighbor methods. By the time we 

switch from global to local learner, we have accumulated more points. Many algorithms in local 

learning need a large number of points to fit functions in high dimension variable space.  

Just as in optimization that no solvers always perform the best and fastest on all functions, no 

learners perform the best and fastest on all datasets. Not all global learners or local learners are 

launched, depending on factors such as number of points and number of variables. For example 

certain learners simply can not be launched with a few points and other learners are only suited to 

fitting in low dimension. If a learner takes an extremely long time, it may just be dropped.  

We are also developing optimization-specific learners that leverage on information from the 

optimization path and runtime optimization performance. They will be illustrated after further works 

at Northwestern University and Motorola Inc.   

The following decisions are based on the three ways that the solver can get functional values: 

retrieval, evaluation, and estimation.  

Intelligence Flow – Retrieval 

Function value retrieval from database happens quite often in practice. Our database is in essence 

a hash table with the hash key being the x variable and the hash value being the function value f(x) 

combined with an access index. Access index measures recentness of variables, useful in cases where 

only recent points are needed for learning, estimation and validation. Admittedly, hash table takes up 

memory. Our reasoning is that memories are abundant and inexpensive, and in practice we never have 

to face memory overflow due to the accumulation of data points. The growth is only linear. Our main 

concern is speed rather than space. The greatest advantage of a hash table is that row indexing is 

based on a hash function value and record retrieval is of constant time. Thus every time we try to 

search for a point x, we don’t have to go through the entire table, which can be time consuming with 

accumulation of data points in the table. Data precision is kept to certain decimal points and digits 

after that are truncated to avoid numerical ill-conditioning.  

There are mainly 3 reasons that same points are being retrieved. The first is due to searching 

algorithm going back to the same region.  The second is due to algorithms using finite difference to 

evaluate gradients. For a simple illustration, in a one variable optimization, the left point used to 

estimate the gradient at the current point may be the next current point if the search decides to move 

left to that point. The third reason is an implementation issue. Most of the time when a solver 

implementer codes an algorithm, he assumes that function evaluation time is negligible or about the 

same as retrieving from memory. So in each iteration he may just keep on requesting the same 
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function evaluation to calculate gradient, direction, step size etc, rather than store, after first 

calculation, the value in a local variable for later retrieval.  

A closest point (Process 23) may also be returned depending on its Euclidean distance to the 

current point. Because variables are normalized to a same scale before optimization, a “closeness” 

measure is set to a very small fraction of 1 multiplied by the number of variables. The closest point is 

returned if the distance between the closest point and current point is (1) smaller than the “closeness” 

measure, and (2) smaller than the distance between the closest point and the last evaluated point. The 

first standard is an absolute measure of closeness whereas the second standard is a relative closeness 

with regard to the latest movement. The second standard is also used to guard against finite difference 

based gradient estimation, in which the last point is almost surely the closest point, thus generating 

gradient value of 0.  

Intelligence Flow – Evaluation 

If no previous data point or closest data point can be retrieved, Analyzer/Decider may choose to 

get the evaluation (Process 24) from the real simulation engine (Process 14) through Central Server 

(Process 13). This process is always launched in a separate process, but the flow does not go on until 

after a maximum wait time. The maximum wait time is adaptively set to some number of times larger 

than a moving average of the previous simulation time. If the simulation result is obtained fine, it is 

first stored in the database or Hash Table (Process 15). If there is error returned or the maximum wait 

time expires, the flow moves on to the next process (process 24) to return an estimated function value. 

This is a major step toward robust optimization design against simulation anomaly. If the process is 

alive after the maximum wait time, it can still store the result in database. This stored result is of 

special interest in validation and comparison of learners, because this point is both estimated by a 

learner (actually returned to solver, too) and evaluated by the real simulation engine.    

Intelligence Flow – Estimation  

If Analyzer/Decider finally chooses to estimate a value from a learned function (Process 25), it 

first needs to validate all the learners to measure learner effectiveness. Whether the estimation is local 

or global depends on whether the last learning process is global or local, because as mentioned above 

only one type of learner can be launched one time. Validation is based on the sum of squared residual 

errors between estimated values and evaluated values. Validations are executed only on the most 

recent data. If not enough recent data are both evaluated and estimated, extra time will be taken to 

extract out the most recent data from the database and estimate them with each learner. The learner 

that performs the best in validation is chosen to return its estimated function value to the solver.  

Currently Analyzer/Decider has an ad hoc mechanism to guarantee convergence or termination. 

Estimation cannot be made in a row for some number of times. After convergence rate is slow or 

iteration number exceeds a certain number, Analyzer/Decider will just choose to always get 

evaluation from real simulation. Due to the small convergence and the large iteration number that we 

set, this mechanism is seldom used in practice.  
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3.1.9 Benchmarks  
 

Figure 3-4 shows an initial benchmarking between the Virtual Prototyping distributed 

optimization system with and without using intelligent techniques, both using exactly the same solver 

and on the same set of distributed machines.   

Comparisons are made only on solution accuracies and time each system takes to achieve such 

accuracies. No comparisons are made between iteration numbers, because it naturally takes less 

iteration for optimization without intelligence since the optimization is always carried on the exact 

value retuned by real simulation. Optimization with intelligence can potentially take a detour in 

searching, but the time saved from getting function values through retrieval and estimation is worth 

such a detour.  

Problem set includes typical nonlinear problems such as Rosenbrock, Beale, Powell, Helix, 

Cube, Box etc. Testing results on other problems are not listed because comparison results are 

extremely similar to those conducted on the Rosenbrock problem. Real Motorola simulation services 

are used too. More will be included later. The initial benchmarking results are quite encouraging.  

First of all without any intelligence, distributed optimization service will simply not be able to 

finish if simulation engines crash. The Intelligent optimization system can sustain up to 50% 

simulation errors, that is one out every two times a simulation engine will crash. Though the time it 

takes to finish optimization (naturally) increases with errors, but most of the time it increases at a 

slower rate than the errors, especially when the number of errors is small around 1%.  

With simulations whose function evaluations are quick, there is no advantage of using intelligent 

optimization, due to all the overhead needed to getting a simple function value. But with longer 

service delay (that is, when simulations take more time), intelligent optimization system turns out to 

be saving more time with about the same accuracies achieved. Usually accuracies achieved are always 

about the same, because standards used for termination in the solver are not changed at all. In practice, 

a client has the choice to set optimization system to using intelligence or not. Most clients have a good 

idea about the behaviors of the simulation services. If the simulations are instant and robust, they are 

suggested to set the intelligence off.  
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Figure 3-4: Benchmarking between distributed optimization with and without intelligence 
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3.2 AMPL and Network Enabled Optimization System (NEOS) 
 
3.2.1 Standalone AMPL Architecture  
 

AMPL is a modeling language for mathematical programming. For detailed description, refer to 

the book in [27].   Figure 3-5 shows the standalone optimization modeling system architecture of 

AMPL interacting with a locally connected solver.   

 

 

Figure 3-5: Standalone AMPL-Solver Architecture 

 
 A user begins in a command environment. After starting AMPL, the first thing the user sees is 

AMPL’s prompt: 

    ampl: 

The user communicates with AMPL in two ways: by typing commands, and by setting options that 

influence subsequent commands. In Figure 3-5, the user invokes a previously constructed model, 

which usually consist of a “.mod” file and a “.dat” file. The “.mod” file is AMPL’s abstract algebraic 

representation of an optimization problem. The “.dat” file contains specific values of data that define a 

particular problem. AMPL then combines the “.mod” and “.dat” file and converts them into a lower 

level optimization instance representation in the AMPL “.nl” format. The “.nl” instance file is then 

sent to a solver for optimization through the AMPL-Solver Driver, which is basically an interface 

between the AMPL modeling language and the hooked solver.  

For nonlinear objectives and constraints, the AMPL-Solver Driver has at its back corresponding 

expression trees for calculating function values. Throughout optimization iterations, solver asks for 

function (fx) values from the expression trees by providing the current variable (x) values, all through 

the AMPL-Solver Driver.  
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Finally optimization results are sent back by solvers, which again go through the AMPL-Solver 

Driver interface, and get converted into the AMPL “.sol” format to be finally interpreted and 

presented by the AMPL modeling environment.  

3.2.2 AMPL-NEOS Architecture    
 

The NEOS Server at Argonne National Laboratory currently provides nearly 70 optimization 

solvers through some types of networking interfaces, including e-mail, World Wide Web, and socket-

based graphical user interfaces. Though the server’s location is fixed, optimization solvers can be on 

any workstation on the Internet that is registered with NEOS through a standard procedure [12].  

The Kestrel interface augments the interfaces currently available on NEOS by providing a 

mechanism that enables remote optimization solution from within the AMPL modeling environment.  

For detailed description, refer to the paper in [13]. As a result, the locally running AMPL modeling 

system can have access to a wide variety of the remote NEOS solvers. Users don’t notice significant 

differences between local and remote accesses to solvers. Moreover, optimization results are provided 

within the AMPL modeling language so that users do not need to parse the text file to use the 

generated answers. The introduction of the Kestrel interface does not require significant changes to 

the NEOS server either. 

 

 
 

Figure 3-6: AMPL-NEOS Architecture through Kestrel 

 
 In terms of architecture, there are no major differences between the standalone AMPL and the 

AMPL-NEOS system shown in Figure 3-6. They are essentially the same at the two ends of the 

optimization process, that is, the command environment invocation and the solver-driver interaction. 

The AMPL-NEOS system adds a Kestrel client and a Kestrel server between the AMPL modeling 

environment and the NEOS server and connects the two Kestrel interfaces with a CORBA 

(http://www.corba.org) interconnection. The “.nl” and “.sol” file are transmitted via the Kestrel 

http://www.corba.org/
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interfaces onto the Internet through the NEOS server to and from the registered solver in Figure 3-6 

rather than locally on the same operating systems in Figure 3-5. As will be seen in §6.2, the seemingly 

complex optimization system is just an example of our general design of decentralized distributed 

optimization architecture. 

3.2.3 AMPL-NEOS Optimization Problem Representation Issues 
 

The large number of optimization types serves as a barrier as well as a motivation toward input 

format standardization. As a matter of fact, neither AMPL nor NEOS precludes any text or binary file 

format to be passed to a solver. For example, if there are N solvers on NEOS, then N different drivers 

are required to be implemented by the AMPL developers for total compatibility. There several 

algebraic modeling languages supported by NEOS. Suppose there are M modeling languages and N 

solvers, then M × N drivers are required for complete interoperability over NEOS.   

Even a cursory look at the NEOS Server’s list of solvers (Figure 3-7) reveals the babble of input 

formats recognized by current optimization software. There are about 10 different low-level formats – 

ones that describe problems instances – recognized by one or another solver in the NEOS lineup, 

including MPS [43] formats for linear and integer programming, SMPS [2] extensions to the MPS 

format for stochastic programming, SIF [10] for nonlinear programming, formats such as SDPA 

specific to semidefinite programming, and DIMACS min-cost flow and other formats for network 

linear programming. Other solvers recognize input programmed as functions in various languages 

including FORTRAN, C, C++, and Matlab.  

To the extent that there is any greater degree of standardization, it is through the use of input 

written in higher-level optimization modeling languages. Although NEOS works with the GAMS 

[3][6] and AMPL [26][27] languages, however, each of these supports only some of the available 

solvers. An arrangement that applies AMPL solvers to GAMS models is at best a stopgap, requiring 

execution of both the AMPL and GAMS compilers.  

In our general and unified design and framework for distributed optimization, we propose a new 

low-level format (Optimization Services Template Language – OSTL, see §7.1.1) that will be flexible 

enough to represent a broad variety of the optimization problems currently handled by the NEOS 

Server. Our presentation will address problems that are not application-specific, but that are as 

specialized as network linear programs or as generalized as nonlinear-constrained nonlinear programs. 

The adoption of such a format by solvers will make them more universally available through internet 

services. The adoption of the same format by modeling languages will enable solvers to more readily 

support many languages, moreover; the overall effect will be to decouple language and solver choice, 

letting the user pick the best tools for any project.  
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Figure 3-7: Part of the NEOS Server’s list of solvers and problems formats 

 
 Currently circumstances are particularly favorable for a study of this sort. It is not only that 

services such as the NEOS Server demand more standardization. New principles and tools, such as 

XML, described in §4.3.2, have emerged over the past few years to guide the design of standard forms 

for Internet communication of all kinds. The XML Schema described in §4.3.3, for example, can be 

used to enforce a standard for optimization and can grow in a well-defined way to accommodate new 
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problems types. This contrasts with the current situation, where for example parsers for the MPS 

Standard [43] vary in details between implementations, interpreters of the SMPS standard [2] are even 

more varied, and no proposal for nonlinear extensions (see, for instance [35]) has caught on at all. The 

proposed optimized service representation consisting of Optimization Services Template Language 

(OSTL, §7.1.1), Optimization Services Result Language (OSSL, §7.1.2) Optimization Services 

Option Language (OSOL, §7.1.3), Optimization Services Simulation Language (OSSL, §7.1.4) and 

Optimization Services Analysis Language (OSAL, §7.1.5), undertake an ambitious project to design a 

standard representation that addresses all of the problems types supported through the NEOS Server, 

with sufficient flexibility to be extended to new types. These Optimization Services representation 

standards can provide diverse higher-level modeling languages with a standard way of reaching 

solvers.  

 This work is also complementary to the design of OSI, a standard procedural interface to solvers 

currently being implemented under the auspices of the COIN-OR project [36]. OSI provides a way of 

calling optimizers directly from applications, whereas our standard is to be a representation of the 

content of optimization problem instances, which could be communicated to solvers in a variety of 

ways.  We intend to use COIN-OR to publicize our work on this project, to attract additional 

collaborators and reviewers, and to distribute the interface library for our XML-based standard.  

3.2.4  AMPL-NEOS Optimization Communication Issues 
 

Solving large optimization problems may require computational power far beyond regular 

desktop workstations can offer. Due to increasing performance of computing and networking power, 

typical users now have access to more resources than ever before. When the NEOS project was begun 

in 1995, the Web was just beginning to come into widespread use. At first the NEOS supported only 

low-level file formats and FORTRAN programs, and input only via e-mail; successive enhancements 

provided the much more powerful and convenient communication options available today. To ensure 

reliability of the Server, this work used early and relatively mature standards, such as web forms, 

TCP/IP sockets for the NEOS Submission Tool (see http://www-neos.mcs.anl.gov/neos/server-

submit.html) and CORBA for the Kestrel interface [13] (see also http://www-

neos.mcs.anl.gov/neos/kestrel.html). Nowadays, a user can typically submit an optimization problem 

to NEOS via any of the above-mentioned interfaces. NEOS Server then locates the specified solver in 

its data bank and schedules the user’s entire data on a remote computation resource that is currently 

available and equipped to process jobs of the given type. Registered solver providers must provide 

both software and hardware. Solver administrators have to write implementations to check data 

consistency, solve optimization and return appropriate results. The NEOS Communication Package – 

a Perl application, is provided to facilitate communications between NEOS Server and solver 

computers.   

http://www-neos.mcs.anl.gov/neos/server-submit.html
http://www-neos.mcs.anl.gov/neos/server-submit.html
http://www-neos.mcs.anl.gov/neos/kestrel.html
http://www-neos.mcs.anl.gov/neos/kestrel.html
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Still, the current NEOS Server only begins to address the communication difficulties of large-

scale optimization with respect to the combinatorial effect of the plethora of solver types, interface 

choices, scheduling, benchmarking, and connection to modeling languages and services that calculate 

function values. The Server has evolved along with the Web and the Internet, moreover, it is limited 

to some degrees by early design decisions and showing a so-called “second-system effect.”  

We are now seeing a new generation of standards that are designed to make Web Services (see 

§4.3.5) more flexible in design and easier to build and maintain. With tools like XML (see §4.3.2), 

SOAP (see §4.3.5), WSDL (see §4.3.6), WSIL (see §4.3.7), UDDI (see §4.3.8) and OGSA (see 

§4.3.9), we can think about a more general and flexible Optimization Services environment for 

developers and researchers to make their models, solvers and simulations available and easily interact 

with each other on the Internet.  
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4 SETTINGS FOR THE DISTRIBUTED OPTIMIZATION DESIGN 
AND FRAMEWORK  

 

4.1 A General Picture – The Future of Computing 
 

Figure 4-1 shows a likely future of computing where semantic Web Services and software agents 

interact with each other. A user, or maybe more appropriately a “consumer” plugs his computer into a 

so-called “computing socket” or may be a wireless access point, which is presumably next to the 

electrical and phone outlets. Computing then is solely viewed as part of the daily utilities that are 

ubiquitously available. The corresponding utility or power company is the consumer’s application 

service provider that rents computing power and resources and charges with a monthly bill. As soon 

as the consumer starts his computer, a network connection is instantly established. Software agents 

will help find where the consumer’s requested services are, automatically, based on the request time, 

the computing socket location, and the consumer’s own needs. The software agents are themselves 

software services. The consumer is not aware of the existence of these agents. “Computing power 

companies” keep registries of these agents and contact them on behalf of the consumer. The consumer 

does not need to know which computer or grid of computers his requested services are finally run, just 

as he does not need to know where his electric power is generated or where the water flows in from. 

To locate services, software agents usually coordinate with each other and/or with Universal 

Description, Discovery and Integration (UDDI, §4.3.8) that are either general registries which keep 

information of all kinds of Web Services or specialized registries like the NEOS Registry (see §6.4) 

that only serves Optimization Services (see §5) Facilities like Condor [18][40] will also help in 

finding computers to provide idle computing power.  

Admittedly most of these tasks could be achieved by an arrangement of manual labor and 

customized software tools using existing technologies, although it would be an enormous human 

effort – think of the early Yahoo search engine for web pages with human categorization). Listed 

below are the major components that are used to achieve the tasks described in the above scenario, 

some mature enough to be commercialized, whereas others still in research phase:  

• Peer to Peer (P2P) [44] 

• Software Agents [1][19] 

• Ontologies and the Semantic Web [8] 

• Grid Computing [21] 

• Embedded Web Services [7] 

Although the argument is true that many of the technologies already existed, it is the combination 

of distributed system embedded intelligence, smooth coordination of all the tasks, and effortless 

human involvement in the whole integration process that makes these scenarios significant. In this 
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case, think of, as a first non-standard step, the Google search engine for web pages [5], with its 

automated web crawlers and state-of-the-art file storage design with inverse indexing technologies.  
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Figure 4-1: A general picture – The Future of Computing 
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4.2 Our Positioning – The Hierarchy of Operations Research (OR) 
 

Ideally, researchers in all areas that involve computing or have a need for computing, should 

have a similar vision as illustrated in §4.1, thus from now on working toward or helping to achieve the 

same goal ultimately. Researchers in the area of operations research especially fit in this category as 

illustrated in Figure 4-2. Operations research, viewed by many as a branch of applied mathematics, 

naturally lies on the foundations of mathematics and computing theory, on which basic tools like 

statistics, optimization and simulation are built. We apply these tools to model many of the industrial 

engineering and management sciences areas that concern design, analysis and implementation of any 

system in order to improve quality and productivity. The areas can be in any sector of the economy – 

manufacturing, distribution, finance, marketing etc.  

The highest level in the hierarchy, which concerns modeling, is the part that mostly interfaces 

with regular consumers who use models for daily analysis. Our project’s positioning is in the middle 

of the Operations Research hierarchy, which is concerned with things like communication 

infrastructures, modeling languages and systems. It is an interface part that bridges OR modeling with 

the basic OR tools. When implemented smoothly, it is the part that does not need to be known or 

noticed by modelers or “consumers” in a daily sense. When planned generally, it is the part that can 

fit in the general picture of the future of computing (see §4.1), thus contributing, as well as itself 

benefiting from, the largest possible synergy generated within the computing world. When designed 

simply enough (without sacrifice of power), it is the part that can be quickly adopted by both the 

modelers and the tool builders, thus facilitating a healthier environment for OR development as a 

whole. Our general and unified design and framework for distributed optimization takes account of 

these goals.  
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Figure 4-2: A rough sketch of operations research and this proposal’s positioning within this 
hierarchy 
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4.3 Technologies, Terminologies, Current States of Optimization Services 
Related Research 

 
This proposal uses some knowledge that does not necessarily pertain to the field 

Operations Research. This necessitates a section devoted to a general introduction to related 

research, and clarifications of certain concepts and terminologies that can sometimes cause confusion.  

4.3.1 Parallel/Distributed/Grid Computing 
 

There are many definitions attempted to make distinctions between the three. In short, parallel 

computing is about a process or an algorithm to parallelize a program; distributed computing is more 

about building a computing architecture; whereas grid computing is to provide the underneath 

environment or mechanism to facilitate parallel and distributed computing. Below are three 

definitions that I think should be clear enough to set the differences: 

• Parallel Computing 

“Process by which a problem is solved using multiple resources working concurrently and 

collaboratively.” [Class Notes on Parallel Computing, ECE Department, Northwestern University, P. 

Banerjee] 

• Distributed Computing 

“Computing on networked computers which is deeply concerned with problems such as 

reliability, security, and heterogeneity that are generally regarded as tangential in parallel computing.” 

[Designing and Building Parallel Programs [20], I. Foster] 

• Grid Computing 

“An ambitious and exciting global effort to develop an environment in which individual users can 

access computers, databases and experimental facilities simply and transparently, without having to 

consider where those facilities are located.” [RealityGrid, Engineering & Physical Sciences Research 

Council, UK 2001]    

Our project more fits in the sphere of distributed computing, which is “deeply concerned with” 

“heterogeneity”. It does, however, also leverage on the “environment” provided by Grid Computing, 

as well as Web Services, which we will talk about more in the following sections.  

4.3.2 XML 
 

XML stands for eXtensible Markup Language. It is a subset of Standard Generalized 

Markup Language (SGML) constituting a particular text markup language for representation 

and interchange of structured data. For a quick reference, see [47]. For a complete reference, 

see [56]. SGML is a standard for how to specify a document markup language or tag set. 

HTML is another example of SGML.  
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 Forms based on XML, in particular, are being used for a wide variety of purposes, and we 

propose to investigate their application for communicating instances of optimization problems. An 

XML representation consists of data delimited by <tags>, much like an html representation of the 

content of a web page. New collections of XML tags can be defined for any specialized purpose, 

however, by specifying a schema (see §4.3.3). One perceived disadvantage of XML is its verbosity – 

the considerable file space taken up by tags – but in fact the tags only increase file size by a constant 

factor, which can be considerably reduced by use of optional alternatives to an ASCII representation.  

 An example of XML is given in Figure 4-3, expressed in MathML [46][58], a dialect of XML 

that is of particular interest in this paper. A dialect is basically an implementation of domain-specific 

XML notation governed by a standard schema designed to support languages such as chemical 

markup (CML), mathematical markup (MathML) and so forth. We will use MathML for simple 

nonlinear function representation in optimization problems. We will also introduce many 

Optimization Services (OS, §5) related dialects in the later sections, including most notably, 

Optimization Services Template Language (OSTL, §7.1.1), Optimization Services Result Languages 

(OSRL, §7.1.2) and Optimization Services Option Language (OSOL, §7.1.3).  

 
 

 

Figure 4-3: Expression (  in MathML – a dialect of XML 2
21 )XX +

 

The example shown in Figure 4-3 expresses  in XML. The root element is <math>, 

which is ended with a corresponding </math> element, as should any element in an XML document. 

2
21 )( XX +
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<math> has an XML namespace tagged in the front and separated with a “:”. Namespaces (see 

§4.3.4) are used to qualify the elements and avoid potential naming conflicts. Any element may also 

have some attributes. In the case of the <math> element, it has some xmlns attributes to declare 

namespace abbreviations. Between <math> and </math> can be contained other elements and in this 

example just one, namely the <msup> element. Under <msup> are again contained two elements: 

<mfenced> to contain the base expression 21 XX + , and <mn> to contain the exponent number 2. 

 

4.3.3 XML Schema 
 

XML Schema is a database-inspired method for specifying constraints on XML documents, itself 

using an XML-based language. There are other popular XML specification methods, including DTD, 

standing for Document Type Definition. The reasons we do not choose to use DTD are: 

1. It is not as expressive as XML Schema. 

2. It is not expressed in XML. 

3. It is not a WC3 recommendation. 

4. Most importantly it is not supported in SOAP (see §4.3.5), which our Optimization Services 

(OS, §5) heavily leverages on.    

For a complete reference on XML Schema, see [62].  Given an XML Schema, standard tools are 

available for parsing files that correspond to it, and for building libraries to display and manipulate the 

contents of these files [53][66]. For each Optimization Services instance language that we introduce, 

we will specify representation rules in XML Schema. 

 

Figure 4-4: MathML Schema specifying constraints on tag <msup>  

 
Figure 4-4 shows a section of the MathML Schema, specifying constraints on the <msup> tag. 

Basically it is saying that the element <msup> has to follow a predefined “msup.type”, and any 

“msup.type” should contain exactly 2 elements, one indicating a base, while the other indicating a 

superscript. Both the base and superscript elements have to be a group defined in the Presentation-
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expr.class, which is not shown here. In our MathML example in Figure 4-3, the group is 

<mfenced>…</mfenced> for the base and <mn>…</mn> for the superscript. Any element can have 

attributes. In our MathML example, element <msup> does not have any attributes. But if it does, it 

can take any attributes specified in the attributeGroup of msup.aatlist. 
 

4.3.4 Other XML Technologies 
 

In this section, we give a list of other XML technologies used in this project and their 

corresponding references.  

• XML Authoring tools assist in editing XML documents or validating XML syntaxes. XML 

documents can be XML Schemas as well as regular XML dialects.  

• XML Transformation tools assist in transforming XML into something that can be displayed in 

a browser or other rendering device. XSL [63], and its associated language XSLT [64], is the 

main tool here. XSLT stands for Extensible Stylesheet Language Transformation, is itself an 

XML based declarative (as versus imperative languages such as C/C++) programming language 

to transform XML files into other HTML files, or XML files or any other plain text files. Figure 

4-5 shows how the combination of XML and XSLT can serve as at least the same purpose as 

HTML. XSLT can be used for example to display optimization results formatted in Optimization 

Services Result Language (OSRL, §7.1.2).    

• XML Parsing Models include mainly Document Object Model (DOM) [54] and Simple API 

for XML (SAX) [42]. Both are language APIs that can be used to translate XML documents to 

some format suitable for use by computer programs. DOM is a set of traversal interfaces that can 

decompose the XML documents into a hierarchal tree of generic objects or nodes. SAX is a set of 

streaming interfaces that can decompose the XML documents into a sequence of predefined 

method calls. To construct an XML document, DOM has to be used. To parse an XML document, 

both DOM and SAX can be used, though SAX is less memory intensive. DOM is mainly used by 

algebraic modeling systems like AMPL to construct low level optimization problem instances and 

by solvers to construct low level optimization results. SAX is mainly used by solvers to parse low 

level optimization problem instances and by algebraic modeling systems to parse low level 

optimization results.    

• XPath [59] is a declarative language used to identify subsets (nodes and fragments) of an XML 

document. It is used in XSLT (for pattern matching), XPointer (for addressing), XQuery (for 

selection and iteration) and XML Schema (for uniqueness and scope description).  

• XLink [57] and XPointer [60] are used to link and reference information within an XML. XLink 

is a generalization of the HTML link concept, though it is more at a higher abstraction level 

intended for general XML – not just hypertext. Thus it has more expressive power, such as 

multiple destinations, special behaviors, and linkbases. XPointer is sort of an extension to XPath 
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to support linking. It specifies connections between XPath expressions and Uniform Resource 

Identifiers (URIs or more plainly, globally unique addresses). XPath, XLink and XPointer are 

especially when some of the function evaluations in optimization problems can only be obtained 

from a remote Web Service.  

• XQuery [61] is a query language for retrieving data items from an XML document. XQuery is to 

XML what SQL is to relational databases. As of December 2003, it is still in progress under the 

auspices of the W3C’s XML Query working group. It may turn out to be useful in designing our 

Optimization Services Query Language (OSQL, §7.3.4).  

 

 

Figure 4-5: An illustration of how the combination of XML and XSLT Stylesheet can serve as the 
same purpose of HTML 

 
• XML Namespace [55] provides a simple method for qualifying element and attribute names used 

XML documents by associating them with namespaces identified by URI references. It is mainly 

used to avoid naming potential conflict of XML tags. Important namespaces that need to be 

standardized include “OSCL” and “OSDL” for qualifying the element <definition> in our 

Optimization Services Client Language (OSCL §7.2.1) and Optimization Services Definition 

Language (OSDL §7.2.2) and “OSIL” for qualifying the element <inspection> in our 

Optimization Services Inspection Language (OSIL §7.3.1).  
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4.3.5 Web Services and Simple Object Access Protocol (SOAP) 
 

W3C’s official definition of Web Services [65] is as follows as of August 2003: 

“A Web Service is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable format 

(specifically WSDL). Other systems interact with the Web Service in a manner prescribed by 

its description using SOAP-messages, typically conveyed using HTTP with an XML 

serialization in conjunction with other Web-related standards.” 

More plainly Web Services are platform and implementation independent components that can 

be described using a service description language, published to a registry of services, discovered 

through a standard  mechanism (at runtime or design time), invoked through a declared API, usually 

over a network and composed with other services.  

“Platform and implementation independent” means a client can not tell what language, 

operating system, or computer type was used. It is achieved through the Simple Object Access 

Protocol (SOAP, see this section below).  

“Described” means that a Web Service must describe itself, mainly what requests can be made, 

what the arguments are and what transport it uses. It is achieved through the protocol of Web Services 

Description Language (WSDL, §4.3.6).  

“Published” means that a Web Service must tell a registry service where it is located (like 

"yellow pages"). It is achieved through the protocol of Web Services Inspection Language (WSIL, 

§4.3.7) and Universal Description, Discovery and Integration (UDDI §4.3.8).  

“Discovered” means that a potential client can find it in a registry service. It is also achieved 

through the protocol of WSIL and UDDI.  

“Invoked” means that the arguments and return types are known. It is achieved through the 

protocol of SOAP.  

“Composed” means that a service can also be a client. It is also achieved through the protocol of 

SOAP. 

The World Wide Web Consortium (W3C) released its first recommended version SOAP 1.2 on 

June 24 2003. SOAP Version 1.2 is a relatively simple powerful XML-based protocol intended for 

exchanging structured information in a decentralized, distributed environment such as the Web. A 

W3C Recommendation is the equivalent of a Web standard, indicating that this W3C-developed 

specification is stable, contributes to Web interoperability, and has been reviewed by the W3C 

Membership, who favor its adoption by industry. 

SOAP allows calls to remote objects’ methods and access to remote objects’ data using standard 

Web Services, the standard HTTP protocol for those services, and XML to describe the call. SOAP is 

intended to serve as a more general and flexible successor to DCOM and CORBA. Figure 4-6 gives 
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an illustration from architecture view, protocol view, SOAP envelope structure view and 

HTTP/SOAP message view.  

In the architecture view, a user constructs an application in any language (e.g. Visual Basic). The 

purpose of the application is to call, as a client, a remote application or Web Service on the network, 

again written in any language (e.g. Java). The client’s VB structure is serialized (that is transformed 

from binary to ASCII) through a SOAP client and into a SOAP message. SOAP message is then 

transmitted via network to the remote application service. At the remote end, the SOAP message is 

deserialized from its ASCII XML form into a binary Java structure, before the application service 

executes the request call. Response is returned in a same way.  

 

Figure 4-6: SOAP illustration from high to low level 

 
In the network view protocol, all the information needed for the client call is stored in a SOAP 

envelope. SOAP envelope is usually packed inside an HTTP protocol. From that point on, the HTTP 

packet is transmitted over a TCP/IP transport the same way that an HTTP request for a web page is 

transmitted. The only difference is that a request for a web page usually contains HTTP content such 

as GET or POST methods for an HTML document, whereas a request for a Web Service always 

contains a SOAP envelope. 
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A SOAP envelope contains two sections: SOAP Header and SOAP Body. SOAP Header mainly 

has some administrative information to complete a call. SOAP body contains the major request and 

response information, for example call methods and arguments. SOAP Body also contains a 

subsection of SOAP Fault, which contains exception error returned by the called Web Service. As 

shown in the actual message part of Figure 4-6, the realization of SOAP Envelope, Header, Body and 

Fault is purely through XML representation. This is one major difference between SOAP and all other 

major networking protocols and may start a standard for newly developed network protocols.  

All our Optimization Services networking mechanism is based on SOAP. 

 

4.3.6 Web Services Description Language (WSDL)  
 

Web Services Description Language (WSDL) [65] is another XML document type that defines 

the XML tags to be used in accessing a Web Service. But, for example, in case where a user knows 

exactly where an Optimization Service is and how the Optimization Service should be invoked, 

WSDL is optional. WSDL helps significantly in registering, discovering and automation of Web 

Services. Links to WSDL descriptions can be given through Universal Discovery and Integration 

(UDDI §4.3.8) listings. 

 Two types of information in WSDL are specified. One is that about interface semantics and the 

other administrative details of a call to a Web Service.  Interface semantics includes elements of 

portType (equivalent to a program interface), operation (equivalent to a method signature/prototype), 

message (equivalent to input and output) and types (equivalent to data types). Administrative details 

includes elements of binding (specifies transport and encoding protocols), port (specifies network 

addresses), service (specifies a collection of ports), and definitions (root element of WSDL that 

contains all the above elements). In our Optimization Services Description Language (§7.2.2), we will 

enforce a standard on call interface and arguments, fix certain values by default and suggest 

recommendations that are most suitable for Optimization Services, thus simplifying the entire 

mechanism.  

Figure 4-7 shows an abbreviated WSDL definition. Illustrated elements about method, interface, 

protocol and address are of most relevance to our design of an Optimization Services framework. The 

entire program, called “SimpleSolver” in this example contains (in <portType>) only one operation 

(or function, method, etc.): “favoriteSolver”, which takes a “favoriteSolverRequest” as an input and 

“favoriteSolverResponse” as an output. Both “favoriteSolverRequest” and 

“favoriteSolverResponse” are defined in their corresponding <message> element. For example 

“favoriteSolverRequest” has only one part (or argument) in it, which has a name “question” and is 

of type “string.” The <protocol> element specifies that the SOAP call is to be a remote procedure 

call (rpc, a request and response model) and is to be transported over HTTP. The <Service> element 

specifies an address (in <port>) which tells where the actual Web Service is.   
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Figure 4-7: An abbreviated WSDL document 

 
4.3.7 Web Services Inspection Language (WSIL) 
 

After a Web Service is deployed, potential users must have a way to find and use that service 

For web pages/sites, search engines like Google and Yahoo do this function, though search 

information is of non-standard form. Web Services Inspection Language (WSIL), as well as Universal 

Description, Discovery, and Inspection (UDDI) in the next section handle the situations for Web 

Services.  

UDDI is a specification for an online registry of Web Services. WSIL is similar in scope to 

UDDI, but intended to be complementary rather than competitive. WSIL can be used to point to 

UDDI repositories. Service description information can be distributed to any location using a simple 

extensible XML document format. Compared with UDDI, it is more decentralized, more lightweight 

and of lower functionality. WSIL works under the assumption that you are already familiar with the 

service provider. Both WSIL and UDDI rely on other service description mechanisms such as WSDL 

and they are located using existing Web infrastructure. WSIL avoids one of the current difficulties 

with UDDI: entries in UDDI registries are not moderated and a user can not be sure that a service 
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actually belongs to the service provider who advertises it within the UDDI registry. Figure 4-8 shows 

an abbreviated example of a WSIL document. Most information is self-explanatory in this example. It 

contains an abstract about the Web Service, a service section detailing the description of the service, 

and a link to other related Web Services. Our Optimization Services Inspection Language (OSIL 

§7.3.1) is essentially a WSIL document.  

 

 

Figure 4-8: An abbreviated WSIL document 

 
4.3.8 Universal Description, Discovery and Integration (UDDI) 
 

Universal Description, Discovery and Integration (UDDI) [52] is a specification for an online 

registry of Web Services. Providers can list their services in this registry, and users can seek out 

services by searching the registry in a standard way.  

Compared with WSIL, it is more heavyweight, and is intended to be maintained by centralized 

registries. Unlike WSIL, it also concerns itself with business entity information. If WSIL is 

comparable to business cards, then UDDI is more like yellow pages, under which multiple 

"businesses” are grouped, listed along with goods or services offered and business contact 

information. UDDI usually requires infrastructure to be deployed with substantial overhead and costs.  

Two main parts of functions are provided. Vendors register data via SOAP. Users discover the 

services via SOAP query requests. NEOS or other designated Optimization Services will, in the long 

run, evolve into a registry based on the UDDI model containing many OSIL documents.  

4.3.9 Open Grid Services Architecture (OGSA) 
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The Globus Alliance [22] is building fundamental grid computing technologies. By its definition, 

“grids are persistent environments that enable software applications to integrate instruments, displays, 

computational and information resources that are managed by diverse organizations in widespread 

locations.” A major research effort of Globus Alliance is its Globus Project on developing the Globus 

Toolkit, which is an open source software toolkit to build grids. A growing number of projects and 

companies are using the Globus Toolkit which has become a de facto standard for major protocols & 

services, although at the present time its popularity is overshadowed by the recent success of Web 

Services championed by major research institutes and companies.  

Globus Alliance’s Open Grid Services Architecture (OGSA) [23] represents an evolution 

towards a Grid system architecture based on Web Services concepts, to take advantage of Web 

Services’ standard interface definition mechanisms, multiple protocol bindings, multiple 

implementations, local/remote transparency, etc. All services also have to adhere to specified Grid 

Service interfaces and behaviors. At this point, OGSA is evolving quickly, currently at its first 

version, but far from complete or perfect.  

Compared with Web Services, OGSA is (potentially) strong in the following areas 

• Authentication and authorization 

• Global naming and references 

• Lifetime management 

• Resource registration and discovery 

• Resource monitoring, upgradeability, concurrency, and manageability 

• Reliable remote service invocation and notification 

• High-performance remote data access 

OGSA’s major disadvantages lie in its protocol deficiencies; it is currently implemented on a 

heterogeneous basis of HTTP, LDAP, FTP, etc. It also lacks (though actively intends to fix) standard 

means of invocation, notification, error propagation, authorization, termination and other 

functionalities. Little work has been done on total system properties including dependability, end-to-

end Quality of Service (QoS), and reasoning about system properties.   

 One major difference between Web Services and Grid Services is that Web Services 

addresses discovery and invocation of persistent services while Grid Services also supports 

transient service instances.  

 Web Services with Grid is a good idea. It is becoming a topic in the major super 

computing conferences. It should not be a question of who wins. Both technologies will 

provide things that are valuable toward our development of Optimization Services. As a 

matter of fact, many of the design issues in our Optimization Services are based on the fact 

that components from both technologies can be leveraged upon their maturities. We hope that 

the two technologies will eventually converge with no distinction.  
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5 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR 
DISTRIBUTED OPTIMIZATION (PART I – PROPOSING 
OPTIMIZATION SERVICES) 

 
Optimization Services (temporary definition, abbreviated as OS) are SOAP based Web Services 

(potentially also leveraging on grid computing technologies) with specified interfaces and behaviors 

under the general framework of distributed optimization, including the following OSXL’s:  

for representing optimization instances 

• Optimization Services Template Language (OSTL, §7.1.1): used to construct optimization 

problems 

• Optimization Services Result Language (OSRL, §7.1.2): used to construct optimization 

results returned from solvers 

• Optimization Services Option Language (OSOL, §7.1.3): used to construct simulation inputs 

and outputs for function evaluations 

• Optimization Services Simulation Language (OSSL, §7.1.4): used to set solver options 

• Optimization Services Analysis Language (OSAL, §7.1.5): used to provide meta-knowledge 

of optimization problems though optimization analyzers 

for controlling optimization accesses, flows and operations 

• Optimization Services Client Language  (OSCL, §7.2.1): used for solvers to call simulation 

services 

• Optimization Services Description Language (OSDL, §7.2.2): used for modelers to invoke 

solvers 

• Optimization Services Flow Language (OSFL, §7.2.3): used to coordinate Optimization 

Services components 

• Optimization Services Endpoint Language (OSEL, §7.2.4): used to manage non-functional 

characteristics of Optimization Services 

and for discovering and inspecting Optimization Services 

• Optimization Services Inspection Language (OSIL, §7.3.1): used to describe any 

Optimization Services components, but mainly solvers 

• Optimization Services Process Language (OSPL, §7.3.2): used to describe run time 

information of solvers 

• Optimization Services Benchmark Language (OSBL, §7.3.3): used for an authoritative 

benchmarker to evaluate existing solvers 

• Optimization Services Query Language (OSQL, §7.3.4) :used to construct queries to 

discover Optimization Services  

.  
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 Such an arrangement in the Optimization Services definition has the potential to substantially 

decentralize the registry of solver characteristics currently maintained by the NEOS Server at 

Argonne National Laboratory. The remaining work of the centralized NEOS Server would be focused 

on activities not specific to individual solvers, such as analyzing problems and recommending solvers 

and on providing multi-solver services such as benchmarking and translation (as with the current 

GAMS-to-AMPL modeling language translator). 

 This vision of a next-generation NEOS Server leaves open the question of how optimization 

“jobs” will be scheduled to run on available workstations. The current centralized scheme maintains 

one queue for each solver/format combination, along with a list of the workstations on which each 

solver can run. We will want to maintain this scheduling control, while at the same time making the 

scheduling decisions more distributed. We will also investigate extending the power of the NEOS 

scheduling schemes to take advantage of Grid Computing [21], both in making use of idle use of  

computing power (as provided, for instance, by Condor [18][40]) and in supporting the use of multi-

processor optimization methods. In the case of the latter our work has especially great potential to 

stimulate new applications, by saving potential users the considerable difficulty of setting up the 

required hardware and networking software. Figure 5-1 shows a tree view of Optimization Services. 

 

 

Figure 5-1: A tree view of Optimization Services 
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6 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR 
DISTRIBUTED OPTIMIZATION (PART II – ARCHITECTURE 
DESIGNS) 

 
From our experiences in designing and developing optimization systems, we realized that in 

general most optimization systems can be decomposed into five distinct optimization components –

Client, Model, Solver, Simulation and Server/Registry, whether they are distributed on a network 

or “distributed” on the same operating system. The latter can be regarded as a special case in the 

general distributed architecture. There are, however, two types of general design – the centralized 

version and the decentralized version, as we will respectively investigate in §6.1, and §6.2. In the 

centralized version, the central component is a server, whereas in the decentralized version, the central 

component is more of a registry. The decentralized architecture is envisioned as the trend of the 

future, while the centralized architecture is more suitable in a corporate environment, in which 

companies want to take control through this central server. We will revisit Motorola’s VP Intelligent 

Optimization System and Argonne’s AMPL-NEOS System under the two general architectures in 

§6.1, and §6.2. The decentralized design serves as the basis for deciding the necessary pieces for our 

general and unified framework for distributed optimization introduced in the following sections. The 

main guiding principles for our design and framework are:  

• When implemented smoothly, it does not need to be known or noticed by modelers.  

• When planned generally, it fits in the general picture of the future of computing (see §4.1), thus 

contributing, as well as itself benefiting from, the largest possible synergy generated within the 

computing world. 

• When designed simply enough (without sacrifice of power), it can be quickly adopted by both the 

model builders and the algorithmic tool builders, thus facilitating a healthier environment for 

operations research development as a whole. 
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6.1 The Centralized Architecture  
 

Figure 6-1 shows the five components in our general design of centralized distributed 

optimization architecture and their interactions. Dotted arrows indicate data flow. Circles indicate 

components: optimization Client, optimization Model, optimization Solver, Simulation for 

optimization and in the center optimization Server (in this example NEOS).  

 

 

Figure 6-1: General design of centralized distributed optimization architecture 

 
Data Flow (All Through the Central Server) 

Numbers below correspond numbers in Figure 6-1.  

1. Client invokes optimization Model.   

2. Model establishes an optimization session with Solver. It can first set solver options and then 

invoke optimization. 

3. Solver, as a client, asks Simulation for function values by providing current variable and 

parameter values. This is potentially a highly iterative process, thus the data flow arrow in 

bold.  

4. Solver sends back optimization results.  

5. Model forwards back optimization results to Client.  
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Comments 
 

Communication and representation specifications introduced later in the general and unified 

framework can be used as references in this centralized design, but do not have to be enforced. 

Optimization Client and Model are usually together, that is, a client locally constructs a model 

and sends the model instance to a remote solver. Between optimization Model and Solver, 

session should be maintained. This is because there is typically a sequence of calls between the 

two. Calls made previously (e.g. setting solver options) may affect calls that follow (e.g. solving 

an optimization problem). Simulation can be thought of as a set of function value calculators, be 

them objective function or constraint function calculators. Simulation can return more than one 

value in its result. No distinctions are set between deterministic and stochastic simulations. For 

example, both values of the expected mean and variance of the mean can be returned as metrics.  

Simulation may be provided within the Model sent to the Solver, like an expression tree that is 

hooked to the AMPL-Solver Driver situated locally with the Solver.  
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6.2 The Decentralized Architecture 
 

Figure 6-2 shows the five components in our general design of decentralized distributed 

optimization architecture and their interactions. All the components remain the same except that the 

central Server is replaced by a central Registry. This is the architecture we envision for the future. It 

serves as the basis for the design and analysis of our general and unified framework for distributed 

optimization. 

 

 

Figure 6-2: General design of decentralized distributed optimization architecture 

 
Data Flow (All Peer to Peer) 

Numbers below correspond numbers in Figure 6-2.  

1. Client discovers Optimization Services through NEOS Registry, through the protocols of 

Optimization Services Inspection Language (OSIL, §7.3.1). Query can be constructed in the 

format of Optimization Services Query Language (OSQL, §7.3.4). Run time information 

may be obtained from Optimization Services Process Language (OSPL, §7.3.2).  
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2. Client invokes optimization Model. This invocation can be in any form or it can take 

references from the protocol of Optimization Services Client Language (OSCL §7.2.1) and 

provide input similar to the Optimization Services Simulation Language (OSSL §7.1.4).  

3. Model establishes an optimization session with Solver, through the protocol of Optimization 

Services Description Language (OSDL §7.2.2). It can first set solver options following the 

format specified in the Optimization Services Option Language (OSOL, §7.1.3) and then 

invoke optimization by providing an optimization problem instance following the format 

specified in the Optimization Services Template Language (OSTL, §7.1.1).   

4. Solver, as a client, asks Simulation for function values by providing current variable and 

parameter values, through the protocol of Optimization Services Client Language (OSCL 

§7.2.1). This is potentially a highly iterative process, thus the data flow arrow in bold. Both 

input (variables and parameters) and output (function values or metrics) are to follow the 

format specified in the Optimization Services Simulation Language (OSSL, §7.1.4).  

5. Solver sends back to Model the optimization results following the format specified in the 

Optimization Services Result Language (OSRL, §7.1.2). 

6. Model returns optimization results to Client depending on the nature of the initial client call. 

If the client call is based on a “request and response” model, then the optimization results is 

sent back though the “response” part of the model. Like in 2, no restriction is specified on the 

return mechanism.  

7. Different components can send individual information to registry through some feedback 

mechanism. For example Client can register an optimization Solver, through the protocol of 

Optimization Services Inspection Language (OSIL, §7.3.1). Queries can be constructed in 

the format specified in the Optimization Services Query Language (OSQL, §7.3.4). Solver 

can report its current status through the protocol of Optimization Services Process Language 

(OSPL, §7.3.2). {This part needs to be further investigated.} 

 

Comments 
 

All components are not controlled by NEOS Registry. Optimization Client and Model are 

usually on the same machine. Whether there should be an optimization specific protocol 

governing the communication between Client and Model is not or may never be considered. 

Between optimization Model and Solver, an active session should be maintained. Session 

maintenance and other generic resource management functionalities that are not optimization 

specific should be leveraged upon either Web Services or Grid Services protocols. For example a 

“stop” call, intended to end an optimization session, should be handled by the notification 

functionality provided in the Grid Services protocol. Simulation can be thought of as a set of 

function value calculators, whether they are objective function or constraint function calculators. 
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Simulation can return more than one value in its result. No distinctions are set between 

deterministic and stochastic simulations. For example, both values of expected mean and 

variance of the mean can be sent back from a stochastic simulation in the output section of 

Optimization Services Simulation Language (OSSL, §7.1.4).   Simulation may be provided 

within the Model sent to the Solver, like an expression tree that is hooked to the AMPL-Solver 

Driver situated locally with the Solver. The exact mechanism of invoking Simulation, is specified 

in the Optimization Services Template Language (OSTL, §7.1.1).  
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6.3 Motorola VP Optimization System Revisited (Centralized 
Architecture) 

 
Figure 6-3 shows how the Motorola VP Intelligent Optimization System fits in the general design 

of the centralized distributed optimization architecture.  

 

 

Figure 6-3: Motorola VP Optimization system mapped under the centralized architecture 

 

1. The remote central server maps to Server. All the information has to go through the 

central server to control logins and keep track of usage statistics.   

2. The client maps to Client. All clients are within the Motorola Intranet.  

3. The model constructor maps to Model. In the Motorola’s VP optimization system, the 

client is separate from the model constructor. Client provides necessary information to the 

model constructor and the model constructor creates a model during run time.  
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4. The solver interface maps to Solver. All the other auxiliary pieces in facilitating 

“intelligence” are behind the solver interface. They are system specific.  

5. All the simulation engines maps to Simulation. They are not Web Services, but the VP 

optimization system has its own proprietary standard in coordinating these simulations on 

the network and parsing inputs and outputs.  

Data flow follows exactly the process described in §6.1.   
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6.4 AMPL-NEOS Revisited (Decentralized Architecture) 
 

Figure 6-1 shows how the AMPL-NEOS System fits in the general design of the decentralized 

distributed optimization architecture.  

 

 

Figure 6-1: AMPL-NEOS system mapped under the decentralized architecture 

 
1. The NEOS Server will become the NEOS Registry, or will be replaced by other 

Optimization Service Registries. It contains records of Optimization Services Inspection 

Language (OSIL, §7.3.1) documents. It provides discovery and registration mechanisms.     

2. The AMPL command environment maps to Client. Client can be any user on the Internet, be 

it a human user or a piece of modeling software.  
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3. The AMPL model maps to Model. In the AMPL-NEOS System, Client is together with 

Model in the same AMPL modeling environment. Client constructs a model and AMPL 

converts it into an optimization instance and sends the instance to a remote solver. 

4. The solver maps to Solver.  

5. The AMPL-constructed expression trees maps to Simulation. In this case, Simulation is 

located on the same machine with Solver, connected with the AMPL-Solver Driver interface. 

AMPL assumes that expressions have explicit functional forms. AMPL may need to extend 

its syntax functionalities to allow, for example, Simulation Web Services that do not have 

closed forms. 

Data flow follows exactly the process described in §6.2.  One significant achievement of the 

general decentralized design is that it gets rid of the AMPL Solver Driver. There is no longer a need 

for such a one-to-one modeling language-solver interface, because all the components talk in 

standardized languages. The AMPL “.nl” file will be replaced by Optimization Services Template 

Language (OSTL, §7.1.1) and the “.sol” file will be replaced by Optimization Services Result 

Language (OSRL, §7.1.2). The Kestrel interface may still exist, but its communication with remote 

objects needs to follow the Optimization Services protocol, rather than CORBA. 
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7 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR 
DISTRIBUTED OPTIMIZATION (PART III – OPTIMIZATION 
SERVICES FRAMEWORK) 
 
The Optimization Services framework is based on the general design of decentralized distributed 

optimization architecture discussed in §6.2. It addresses issues in communications between pairs of 

the five components in the decentralized architecture. Major aspects include representing with new 

XML standard forms for optimization problem instances, scheduling with new Optimization Services 

standards and their use in distributed, intelligent assignment of optimization requests to resources, 

categorizing with standard procedures for guiding prospective users in their choice of solvers, and 

incorporation of analyzing and benchmarking information from a suite of optimization related 

supporting tools into the general framework. For the sake of standardization and uniformity, the 

whole framework is intentionally specified in standard 4-letter acronyms of the form OSXL, standing 

for Optimization Services X Language, where “X” is to be replaced by any other defined alphabetical 

letter. For a quick reference, refer to Figure 8-1. OSXL’s are grouped into 3 main categories: 

Optimization Services Representation, Optimization Services Communication and Optimization 

Services Inspection and Discovery.  
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7.1 Optimization Services Representation  
 

In this section we introduce a set of low level formats for transmission between different 

Optimization Services component, including Optimization Services Template Language (OSTL, 

§7.1.1) for representing optimization problems, Optimization Services Result Language (OSRL 

§7.1.2) for representing optimization results, Optimization Option Language (OSOL, §7.1.3) for 

representing solver options, Optimization Services Simulation Language (OSSL, §7.1.4) for 

representing input/output between simulation and optimization and Optimization Services Analysis 

Language (OSAL, §7.1.5) for representing analysis results of an optimization problem. They can all 

be regarded as dialects of XML (see §4.3.2 for definition of “XML dialect”).  

Before we move on to the proposed optimization services representation languages we should 

explain more about high level and low-level optimization representations. High-level optimization 

representation refers to representing an optimization model, whereas low-level optimization 

representation refers to representing an optimization instance. The distinction between model and 

instance should be clarified. By model we mean an abstract algebraic representation of a problem. It 

can be represented in a modeling language such as AMPL, GAMS, LINGO, ILOG OPL, etc., all of 

which separate model from data. An optimization problem instance is generated by filling a model 

with corresponding data. Examples of instance representations include MPS standard [43] for linear 

programming, SMPS standard [2] for stochastic programming, the “.nl” format [32] used in AMPL, 

and numerous other proprietary formats used in commercial solvers. The Motorola VP Intelligent 

Optimization System also uses its own proprietary formats.  

Low-level optimization representations, that is, optimization instance representations are to be 

transmitted in our distributed optimization network system and our framework for this research will 

be concerned only with low-level representations.   

7.1.1 Optimization Services Template Language (OSTL) 
 

Background and Purposes 
 
Optimization Services Template Language (OSTL) is the first ambitious step toward a general 

framework of optimization services representation that addresses all of the problem types supported 

through the NEOS Server, with sufficient flexibility to be extended to new types. This is an 

undertaking of a breadth and difficulty not undertaken previously in the area of optimization, and as a 

result, OSTL may be viewed as one of the most significant parts of our research.  

It’s worth mentioning the choice of the letter “T” in OSTL. Initially we used “M” for 

“Modeling.” This causes misunderstanding that “OSML” is a high level optimization representation, 

though it is not. Also “ML” is widely used to indicate “Markup Language” as in “XML.” Possible 
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naming conflicts with other areas can be avoided if we just take away the temptation to use the letter 

“M” by forbidding it in any OSXL’s.   

On the other hand, the word “Template” better indicates a unified approach toward representing 

low level optimization instances. The goal of OSTL is not to introduce another totally new instance 

representation format and replace all the others. Rather it is to combine and leverage on the best 

practices of current instance representations, while at the same time phase out the less popular, less 

powerful and nonstandard formats. For example for linear programming instances, OSTL is 

potentially leveraging more on the XML based format such as FMLLP [31] than plain text based 

format such as MPS [43]. One advantage of XML based formats is that additional schemas can be 

included to provide optional extensions. Thus a standard for optimization can be enforced and can 

grow in a well-defined way to accommodate new problem types. This contrasts with the current 

situation, where for example parsers for the MPS standard vary in details between implementations, 

and interpreters of the SMPS standard for stochastic programming are even more varied.  

The construction of OSTL also takes into account that functions may not have a closed form. 

They may be provided in a binary code or from a remote Web Service. {This part needs to be further 

investigated.} 

 

Specification Descriptions 
 
OSML Schema is given in A.1.  

Figure 7-1 shows an OSML example in its simplest form, in which it contains just one type of 

representation. Within the <singleFormat> element, any standard format can be embedded depending 

on the “type” attribute of the element. For example if type = “FMLLP”, an FMLLP representation can 

be included. <singleFormat> can be suitable for linear programming problems. 

 

 

 

Figure 7-1: OSML example with a single format 

 
Figure 7-2 shows an OSML example that contains a <mixedFormat> element. <mixedFormat> 

can be suitable for general mathematical programming problems, e.g. mixed integer nonlinearly 
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constrained problems with some non-closed form functions. Following is a descriptive list for the 

<mixedFormat> element: 

• <mixedFormat> contains three elements: <variables>, <objective>, and <constraints>. 

<objective> is of singular form. It is assumed that in each optimization problem only one 

objective function can exist.  

• <variables> contains a collection of <variable> elements. 

• Each <variable> contains an optional initial value 

• Each <variable> is required to have a name attribute, whose value should be unique. In 

general a name attribute is required of any variable, objective and constraint. One of the 

purposes is that names are used to match with elements in other components of the 

Optimization Services. If no names are specified in high level modeling, default values should 

be “padded” into the low level instance representation. 

• Each <variable> can optionally have a type attribute, which can only take the value of either 

“integer”, “binary”, or “continuous.” By default the value is “continuous” if the attribute is 

not specified. 

• Each <variable> can optionally contain a lowerBound attribute and an upperBound attribute 

to indicate a minimum and a maximum value that the variable can take.  

• <objective> is required to have a name attribute. It contains four elements : <direction>, 

<function>, <lowerBound> and <upperBound>. 

• <objective> can optionally have a type attribute. The purpose is for OSML to leverage on 

existing formats for expressing coefficients of linear objective function. For example, the 

format can take the objective section of a full linear programming format of MPS. {This part 

needs further investigation.} 

• <direction> can only contain one of the two values, namely “minimize” or “maximize.” 

• <function> is of functionType to be discussed below.  

• <lowerBound> and <upperBound> are optional elements to specify lower value and upper 

bound for the objective function.  

• <constraints> can contain both a collection of <constraint> elements and <constraintSet> 

elements.  

• Each <constraint> is required to have a name attribute. It contains three elements: 

<function>, <lowerBound> and <upperBound>, which are of exactly the same types as 

those contained in the <objective> element.  

•  <constraintSet> is intended to express a set of linear constraints, so that coefficients can be 

specified in a more compact form. It is required to have a name attribute.  

• <constraintSet> can optionally have a type attribute. The purpose is for OSML to leverage 

on existing formats for expressing coefficients of linear constraints. For example, the format 
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can take the constraint section of a full linear programming format of MPS. {This part needs 

further investigation.} 

• <function> can contain any one of the elements: <webService>, <MathML> and <binary>. 

{This part needs further investigation} 

• <webService> is intended for simulation or function evaluation on a remote network. It has 

to have two elements,  <URI> for specifying where the service is and <OSSL> for specifying 

input variables and parameters for the Web Service. Specifications such as call operations and 

input/output arguments are already standardized in the Optimization Services Description 

Language (OSDL, §7.2.2) and therefore necessary information is kept to a minimum.  

• <binary> is intended for locally attached binary executable codes. Each <binary> has to 

have a language attribute to indicate what programming language the binary code is generated 

from. Each <binary> also has to have a platform to indicate what computer system the binary 

code is generated on. Like <webService>, it has to have two elements <URI> for specifying 

where the binary code is and <OSSL> for specifying input variables and parameters for the 

Web Service. Solvers don’t need to support this. Users can initially discover through the 

Optimization Services Registry which solvers support the binary code they provide before 

invoking the solvers. {This part needs further investigation.} 

• <MathML> is to follow the MathML Schema. Only that its terms can be of any function 

types described above, besides simple values and defined variables. Constructing 

multidisciplinary objective function with metrics calculated from remote simulations may 

become easy. Usually a multi-objective functions are of simple forms such as weighted sum 

or ratio of metrics, which can be easily expressed in MathML. Metrics can be in the form of 

<webService> elements, which are easy to invoke.  

<OSML> can contain an optional element <OSAL> at its end. <OSAL> element contains meta-

information on the analysis of the optimization problem. It is constrained by the Optimization 

Services Analysis Language (OSAL, §7.1.5) Schema.   
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Figure 7-2: OSML example with a mixed format 

 

7.1.2 Optimization Services Result Language (OSRL) 
 

Background and Purposes 
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Optimization Services Result Language (OSRL) is intended to represent results generated by 

optimization solvers. It is a counterpart to OSTL. OSTL will be used as an input format in the “solve” 

function specified in Optimization Services Description Language (OSDL, §7.2.2) whereas OSRL 

will be used as an output format returned by the “solve” function. Compared with OSTL, OSRL is 

more straightforward. The separation of OSRL from OSTL helps in reducing network traffics and 

enhancing flexibility, among many other benefits. The standardization of OSRL may be most valuable 

to the modelers for the purpose of presentation. It can also help in facilitating benchmarking as 

discussed in §7.3.3.  

 

Specification Descriptions 
 

Figure 7-3 shows an OSRL example. Following is a descriptive list for the <OSRL> element: 

• <OSRL> contains four elements: <status>, <variables>, <objective>, and <constraints>. 

• <status> is to contain general information on the optimization solution, such as “unbounded”, 

“solution found”, “infeasible”, etc. Types of status are to be exhausted. Naming is to be 

standardized. Possible numeric coding standard for representation of status can also be 

introduced. This is comparable to the standardization of the status code definitions of the 

HTTP protocol. For example, in HTTP, code “404” indicates “Not Found”, meaning “The 

web server has not found anything matching the Request-URI.”   

• <variables> contains a collection of <variable> elements. 

• <constraints> contains a collection of <constraint> elements.  

• All <variable>, <objective> and <constraint> elements are required to have a name 

attribute, which value is to be unique.  

• All <variable>, <objective> and <constraint> elements can have two elements: <standard> 

and <specific>.  

• Both <standard> and <specific> contain a collection of <R> elements to contain individual 

results.  

• <R> elements under <standard> are standardized across solvers in terms of naming and 

usage.  

• Individual solvers can have solver specific <R> elements under <specific>.  

• Each <R> element is required to have a name attribute and a value.  

• Each <R> element can have an optional <description> element.  

• <R> elements under <specific> are suggested to have a <description> element.  

• Exactly what other elements are to be contained in the <R> element depends on the meaning 

of each result. But it should be kept as simple as possible. {This part needs further 

investigations.} 
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Figure 7-3: OSRL example 

 
7.1.3 Optimization Services Option Language (OSOL) 
 

Background and Purposes 
 
Before invoking the “solve” function specified in Optimization Services Description Language 

(OSDL, §7.2.2), certain solver options can be set through the “set” function also specified in OSDL. 

OSOL is separate from OSTL for the simple reasoning that OSOL is solver specific whereas OSTL is 
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not.  Options, especially the standard ones in OSOL can be included in Optimization Services 

Inspection Language, so that user can choose solver based on the availability of options provided by 

solvers.  A standard set of options need to be regulated among all solvers regarding naming and usage. 

Solvers can choose not to support some options. But as long as they do, they should use the standard 

names with the same intended uses. There may also be possible naming conflicts between different 

types of solvers. For example “maxIter” in Figure 7-4 can mean differently in linear programming 

solvers and nonlinear programming solvers. But this issue may be solved with a standard XML 

Namespace (see §4.3.4) introduction in Optimization Services world.   

 

Specification Descriptions 
 
Figure 7-4 shows an OSOL example. Following is a descriptive list for the <OSOL> element: 

• <OSOL> contains two elements: <standard> and <specific>.  

• Both <standard> and <specific> contain a collection of <O> elements to contain individual 

options.  

• <O> elements under <standard> are standardized across solvers in terms of naming and 

usage.  

• Individual solvers can have solver specific <O> elements under <specific>.  

• Each <O> element is required to have a name attribute and a value.  

• Each <O> element can have an optional <description> element.  

• <O> elements under <specific> are suggested to have a <description> element.  

• Exactly what other elements are to be contained in the <O> element depends on the meaning 

of each option. But it should be kept as simple as possible. {This part needs further 

investigations.} 
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Figure 7-4: OSOL example 

 
7.1.4 Optimization Services Simulation Language (OSSL) 
 

Background and Purposes 
 
Optimization Services Simulation Language (OSSL) is used as an input/output format for a client 

to call a simulation. Each simulation can be thought of as a function, be it an objective or constraint 

function. It will return some values given a set of input values. No distinctions are made between 

deterministic and stochastic simulations. OSSL contains an input and/or an output section. Input 

section contains two types of elements: variables and parameters. From perspective of simulations, 

they are both input arguments. The reasons to distinguish between two types are that parameters are 

fixed, whereas variables change. Through the iterative process of optimization, parameters may only 

need to be sent on the first call to the simulation, thus reducing networking traffic. Also different 

simulation may choose to treat variables and parameters differently. For example, variable may be 

represented more accurately for calculating derivatives. Variable names in OSSL should match 

variable names in the optimization problem specified in OSTL. By separating variable and parameter 

types, the variable section in OSSL may just keep a simple reference to the corresponding variable 

section in the OSTL. 
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Specification Descriptions 
 
Figure 7-5 shows an OSSL example. Following is a descriptive list for the <OSSL> element: 

• <OSSL> contains two elements: <input> and <output>.  

• <input> contains a collection of <param> and <var> elements indicating parameter inputs 

and variable inputs.  

• <output> contains a collection of <metrics> elements indicating individual simulation 

results.  

• All <param>, <var> and <metrics> elements are typeless.  

• All <param>, <var> and <metrics> elements are required to have a name attribute and a 

value.  

• Usually under <Output>, there is just one <metrics> element indicating a functional 

value. But a simulation can return more than one metrics. In this case, when a functional 

value is requested by client and the metrics name is not specified, the first metrics is assumed 

by default.  

 

 

Figure 7-5: OSSL example 

 
7.1.5 Optimization Services Analysis Language (OSAL) 
 

Background and Purposes 
 
Optimization Services Analysis Language (OSAL) is used to describe meta-knowledge 

or extracted characteristics of an optimization problem.   As shown in §7.1.1, it may be 

included as a section in OSTL. OSAL is separate from OSTL, because OSAL is analyzer 

specific, as well as problem specific.  
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Currently, a NEOS Server user typically begins at the website index screen, which presents a list 

of 13 problem types in  Figure 7-6. 

 

  Figure 7-6: Optimization Problem Types at NEOS 

 
 Each type links into a list of solvers and input formats (Figure 3-7). The choice among solvers is 

then up to the user. To provide some assistance in the choice, each solver has a main page with links 

to the NEOS Guide and to solver-specific documentation (Figure 7-7). 

Although this arrangement has proved adequate for many purposes, unavoidably it burdens users 

with the job of determining a problem type and choosing a solver. Requests to the NEOS help line 

(neos-comments@mcs.anl.gov) suggest, in particular, that many potential users are analysts who have 

the training to build a model using a high-level modeling language, but who do not have the expertise 

to determine what category of model they have produced and what solvers are appropriate for it. The 

previously remarked leveling off of NEOS Solver requests (Figure 2-2) may reflect the difficulty of 

broadening the user base to include modeling and application domain experts who are not also 

algorithm and solver experts. 

A description of an optimization problem instance already contains, at least implicitly, all of the 

information needed to properly categorize the problem. This principle underlies the design of 

interactive problem analyzers such as ANALYZE [33] for linear problems and MProbe [9] for 

nonlinear problems. Interactive analyzers rely on fairly sophisticated users, however, who are looking 

to better understand their problems with the aim of making their own determination of how best to 

solve them. In the context of the NEOS Server, we cannot be sure of as high a level of sophistication 

on the user’s part, nor can we assume that the user is available to interact with the system online. We 

want to make an automated determination of problem characteristics, and of solver choice based on 

those characteristics.  

mailto:neos-comments@mcs.anl.gov
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Our general framework for distributed optimization is not intended to analyze the optimization 

problems. Rather it relies on analysis work done by other researchers, and provides a framework 

specified under the Optimization Services Analysis Language (OSAL) that enforces a standard XML 

output format of analysis results, thus an automated discovery process can be carried under the 

Optimization Services inspection and discovery framework.    

 

 

Figure 7-7: An example of a NEOS Server web page for a particular solver, with links to the 
NEOS Guide and to solver-specific documentation. The box at the top right provides links to the 
web interface and to instructions for other interfaces. 
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 The collaborative research in this area will initially concentrate on design of a problem analyzer 

for the NEOS Server and then concerns the determination of appropriate solvers given a list of 

problem properties from the analyzer. At the beginning, the analyzers will likely be based on the “.nl” 

format of AMPL [32], which is already recognized by two dozen varied NEOS solvers. Later as the 

Optimization Services representation framework becomes finalized, the analyzers will switch to the 

format specified under this framework, taking OSTL as input format and outputting in OSAL format. 

Analyzers on the network are to be called under the Optimization Services communication 

framework, specified by Optimization Services Client Language (OSCL §7.2.1), and possibly also 

Optimization Services Flow Language (OSFL) and Optimization Services Endpoint Language 

(OSEL). 

Analyzers are in a special ways, solvers. Both types take OSTL as an input parameter, only that 

analyzers return information in an OSAL format while solvers return information in an OSRL format. 

Analyzers may also have a set of options to be set before carrying out analysis. Thus it is possible for 

analyzers to leverage on the access framework specified by Optimization Services Description 

Language (OSDL §7.2.2) rather than OSCL. 

 Determination of appropriate solvers based on the meta-knowledge generated by analyzers, is to 

be carried out under the Optimization Services inspection and discover framework specified by 

Optimization Services Inspection Language (OSIL §7.3.1).  

 

Specification Descriptions 
 
Figure 7-8 shows an OSAL example. Following is a descriptive list for the <OSAL> element: 

• <OSAL> contains two elements: <standard> and <specific>.  

• Both <standard> and <specific> contain a collection of <A> elements to contain individual 

analyses.  

• <A> elements under <standard> are standardized across analyzers in terms of naming and 

usage.  

• Individual analyzers can have analyzer specific <A> elements under <specific>.  

• Each <A> element is required to have a name attribute and a value.  

• Each <A> element can have an optional <description> element.  

• <A> elements under <specific> are suggested to have a <description> element.  

• Exactly what other elements are to be contained in the <A> element depends on the meaning 

of each analysis. But it should be kept as simple as possible. {This part needs further 

investigations.} 
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Figure 7-8: OSAL example 
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7.2 Optimization Services Communication  
 

As mentioned in the introduction, the primary difficulty now facing large-scale optimization has 

now shifted to communication. Increasing number of optimization algorithms are implemented 

increasingly well. But every algorithm has its own way of naming interfaces, operations, methods, 

arguments, data types etc. These algorithms, when implemented in software, are programmed in 

different languages and compiled on different platforms. Furthermore, when the software is put on the 

network, thy can be located in various places, and numerous mechanisms are employed to invoke 

them. Due to such an enormous heterogeneity, users become unaware of these “solvers” or do not see 

the potential benefit that would justify using them. Even if the users do realize the benefit, they may 

have a hard time obtaining, installing and interfacing with the solvers.  

Moreover, only certain combinations of solvers and modeling systems work with each other and 

modeling language support is slow to keep up with solver extensions to new problem types due to the 

combination effect of interacting component.  

Internet is now providing an increasingly practical way of addressing communication problems 

in large-scale optimization, especially with the advent of Web Services technologies and the 

establishment of the recommended SOAP 1.2. The Optimization Services Communication 

Framework is motivated by the vision that the next-generation Network Enabled Optimization System 

will be able to address and simplify all the above-mentioned design and implementation issues.  

Unlike the Optimization Services Representation framework, languages specified under the 

Optimization Services Communication framework, are not XML dialects. Rather they are a set of 

specifications written in XML format based on Web Services Definition Languages (WSDL, §4.3.6). 

The main purpose of these languages is to further constrain and simplify certain functionalities in a 

Web Service invocation to tailor to our Optimization Services world. Communication between Model 

and Solver is to follow Optimization Services Description Language (OSDL, §7.2.2). Communication 

between Solver and Simulation is to follow Optimization Services Client Language (OSCL, §7.2.1). 

Theoretically, there can also be communication between Client and Simulation, for example for 

testing purposes. This is in essence a typical Web Services SOAP call – a user calls a service to get a 

functional value. If it is to happen, it follows exactly the same communication mechanism as that 

between Solver and Simulation.  Communication between Client and Model is left open. 

Heterogeneous invocation mechanisms will not affect the distributed optimization process as a whole. 

Client and Model are usually together. Flexible ways should exist to allow customized modeling 

environments to meet diverse customer needs. Distributed Client and Model communication can take 

references from Optimization Services Client Language and specify input/output according to 

Optimization Services Simulation Language (OSSL, §7.1.4).  Communications between all 

components and the central NEOS Registry are left open for now. Likely the two communications 

to be specified are the one between Solver and Registry for reporting solver runtime status 
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and the one between Client and Registry for registering and querying Optimization Services. Likely 

both can leverage on other specifications that are already defined, for example Optimization Services 

Client Language (OSCL).  

7.2.1 Optimization Services Client Language (OSCL) 
 

Background and Purposes 
 
Optimization Services Client Language (OSCL) is mainly intended to call a standard Web 

Service used as a simulation for optimization. Put a different way, any simulation that will be called 

by an optimization solver to get functional values should be interfaced as a Web Service specified by 

OSCL. When a solver needs a function from a simulation, the solver is considered as a client.  

 

Specification Descriptions 
 
OSCL is in essence a WSDL document. It has a root element <definitions> prefixed with an 

“OSCL” namespace. OSCL stipulates only one operation for client interface: 

string call (string input) 

Both return value and input value should be of the XML format specified in Optimization 

Services Simulation Language (OSSL, §7.1.4). Default binding should be SOAP to HTTP. Other 

needs of transport bindings are not seen as of immediate necessities in Optimization Services. It 

should by default be a remote procedure call (rpc) based on the request and response synchronous 

model. To mimic an asynchronous call, the rpc can just be launched in a separate process or thread 

other than the general optimization process. Port addresses (locations of simulations) should be 

specified by modelers when constructing OSTL. Figure 7-9 shows an OSCL example. As mentioned 

earlier, the simple OSCL may be leveraged upon and tailored toward communications between other 

components in our general decentralized design. For example, when a client queries an optimization 

service from NEOS Registry, the same call can be made, only that the input and output have to be of 

the format specified in Optimization Services Query Language (OSQL, §7.3.4). When a solver reports 

its current run time status to NEOS Registry, the same call can still be made, only that the input and 

output have to be of the format specified in Optimization Services Process Language (OSPL, §7.3.2). 

But in general, between any two components, the “call” can only assume one type of pair of input and 

output formats.  
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Figure 7-9: OSCL example 

 
7.2.2 Optimization Services Description Language (OSDL)  
 

Background and Purposes 
 
Optimization Services Definition Language (OSDL) is used by modelers to call solvers, 

including initiating the solver, setting options and solving the optimization. It is the communication 

between Model and Solver in our general decentralized design of distributed optimization. Other 

OSDL functionalities are possible but should only be optimization specific. Between optimization 

Model and Solver, session should be maintained so that options set through a previous call should 

remain in effect when a later call is initiated for optimization. Session maintenance and other generic 

resource management functionalities that are not optimization specific should be leveraged upon 

either Web Services or Grid Services protocols. For example a “stop” call, intended to end an 
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optimization session, should be handled by the notification functionality provided by the Grid 

Services protocol. 

 

Specification Descriptions 
 
Like OSCL, OSDL is in essence a WSDL document. OSCL has a root element <definitions> 

prefixed with an “OSDL” namespace. OSDL stipulates the following client interface: 

int solver (binary bSolve) – for initiating the solver 

string set (string optionInput) – for setting solver options 

string solve (string problemInput) – for solving the optimization 

In the “solver” operation, input value specifies whether a caller just wants to check status 

(“false”) or finally needs to solve optimization (“true”). Output reports solver status. For example “-1” 

can indicate solver not ready and a positive integer can indicate optimization job number for later 

retrieval. Integer encodings need to be standardized. It is similar the standardization of the status code 

definitions of the HTTP protocol. In practice, the “solver” operation can be used by NEOS registry to 

check status of the solver.  

In the “set” operation, both input and output values should be of the XML form specified in 

OSOL (see 7.1.3). Option values in OSOL are set to empty or some equivalent but descriptive 

encodings indicating input request cannot be resolved. Again encodings here should be standardized. 

Based on the retuned status of option settings, modelers can chose to further initiate the “solve” 

operation or not.  

In the “solve” operation, input should be of the XML format specified in OSTL (see §7.1.1) and 

output should be of the XML format specified in OSRL (see §7.1.2). Figure 7-10 shows an OSDL 

example.  
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Figure 7-10: OSDL example 

 
 
7.2.3 Optimization Services Flow Language (OSFL) 
 

Background and Purposes 
 
The term Optimization Services Flow Language (OSFL) is reserved for now. The exact purpose 

is not clear and may well be covered with the future development of Web Services and Grid Services 

technologies. It is not of an immediate design issue. Our informal intention is to organize analyzers, 

solvers, optimization simulations and other Optimization Services components, orchestrate 

information (e.g. input and output), sequence optimization process, resolve common variables etc. 

OSFL may prove to be useful in multi-objective optimization, multi-start optimization, multi-level 

optimization, multi-disciplinary optimization, Multi-task optimization, Multi-processor optimization 

and Pareto-set optimization. It is likely that OSFL will highly leverage on the interfaces specified in 

OSDL (see §7.2.2). It may also need to collaborate with OSPL (see §7.3.2). OSFL will probably wait 

to see the success and popularity of other OSXL’s. 

 

Specification Descriptions 
 
At this point the term OSFL remains as a concept and is not investigated in detail.  

 

7.2.4 Optimization Services Endpoint Language (OSEL) 
 

Background and Purposes 
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The term Optimization Services Endpoint Language (OSEL) is reserved for now. The exact 

purpose is not clear and may well be covered with the future development of Web Services and Grid 

Services technologies. It is not of an immediate design issue. Our informal intention is to be 

compatible with certain grid computing features. OSEL may be used to describe non-functional 

characteristics of an Optimization Service, including quality of service, privacy policy, auditing 

policy. The design of OSEL should not affect the core syntax of OSDL (see §7.2.2). OSEL may affect 

whether the solver requestor chooses to collaborate with a particular solver provider. It can be 

important for asynchronous message flows (that is not request and response model), expected 

optimization time, possible duration estimates for interaction or number of acceptable retires, basis on 

which solver requestor could establish time-out behavior and execute rollback or other 

interaction/compensation mechanism. OSEL should mainly deal with run time information and it may 

need to collaborate with OSPL (see §7.3.2). 

 

Specification Descriptions 
 
At this point the term OSEL remains as a concept and is not investigated in detail.  
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7.3 Optimization Services Inspection and Discovery  
 

Traditionally, distributed optimization systems use a straightforward scheme that relies on a 

database that pairs solvers with problem types they can handle. Characteristics of a problem instance, 

determined from either a manual search or an analysis phase, will be used to automatically generate a 

query on the database that will return a list of appropriate solvers. More advanced scheme will 

consider extensions to generate lists ranked by degree of appropriateness. In a subsequent stage of 

research, a more sophisticated mechanism can be developed to take account of additional that would 

be used by a solver expert.  

The special features of optimization serve to distinguish our research in this area from the routine 

design of new Web Services. Optimization runs are characterized by their huge and hard-to-predict 

consumption of processor time and memory space; only a modest increase in the instance size 

generated from an integer programming model, for example, can cause the solution time to increase 

from minutes to days, with a corresponding increase in the maximum size of the branch-and-bound 

tree. Predictions of resource requirements must take account of problem characteristics, since for 

instance a continuous linear program in hundreds of thousands of variables is generally much more 

tractable than an integer or nonlinear program of the same size. 

Collaborated research, as well as our research outlined in §3.1 can be used to study how 

categorization of optimization problem instances together with statistics from previous run can be 

used to improve upon the current scheduling decision of the NEOS server. As just one example, an 

intelligent scheduler should not assign two large jobs to a single-processor machine, since they will 

only become bogged down contending for resources; but a machine assigned one large job could also 

take care of a series of very small jobs without noticeable degradation to performance on either kind 

of job. Both the kind of size of optimization instances must be assessed in order to determine which 

should be considered “large” and which “very small” for purposes of this scheduling approach. Some 

of the above information can be retrieved off-line, meaning available before solving of a problem. 

Offline information on solvers is mostly specified in Optimization Services Inspection Language and 

Optimization Services Benchmark Language (OSBL). Offline information on optimization instances 

are mostly specified in Optimization Services Analysis Language (OSAL). Other information can 

only be retrieved on-line, meaning available when a solver is solving an optimization problems. 

Online information is specified in Optimization Services Process Language (OSPL) and can be 

conveyed in a feedback system to a registry though mechanisms like Optimization Services Client 

Language (OSCL). Query formats are specified by Optimization Services Query Language (OSQL).  

Again the Optimization Services inspection and discovery framework is not intended to find 

good schemes to pair solvers and problems. Rather it relies on appropriate schemes found already and 

provides a mechanism to facilitate the automation of inspection and discovery process of 

Optimization Services through OSIL, OSPL, OSBL and OSQL. 
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7.3.1  Optimization Services Inspection Language (OSIL) 
 

Background and Purposes 
 
Optimization Services Inspection Language (OSIL) is mainly used to find and register 

optimization solvers. It certainly includes categorization information illustrated in the NEOS 

Optimization Tree (Figure 7-11).  OSIL is to be treated like a “database record” in the Optimization 

Services Registries, only that the record is in XML format rather than a row, and it is to be queried by 

OSQL (see §7.3.4). OSIL can contain optimization information in the form of keywords, abstracts and 

descriptions. It can publish functionalities including supported solver options specified in OSOL (see 

§7.1.3), NEOS authoritative benchmarking (e.g. NEOS solver rankings) specified in OSBL (see 

§7.3.3), OSPL (see §7.3.2) and accepted function types that it supports (see §7.1.1). OSIL can even 

contain links to other valuable information, like a pointer to a compatible solver. OSIL is the part that 

heavily needs authorities’ involvements, for example INFORMS, OTC/NEOS, and W3C.  

 

 

Figure 7-11: NEOS Optimization Tree 

 
Specification Descriptions 
 
Figure 7-12 shows an OSIL example. Following is a descriptive list for the <OSAL> element: 
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Figure 7-12: OSIL example 

 
• <OSIL:inspection> contains at least three elements including, <abstract>, <service> and 

<link>.  

• <abstract> is to provide a brief description and key words about the optimization solver.  

• <link> contains a set of locations that the that can be linked from the current OSIL. It also 

contains a set of <abstract> to describe briefly what the links are.  

• <service> can contain many elements including <name>, <abstract>, <description>, 

<solverCategory>, <OSOL>, <OSBL>, <OSPL>, <FunctionTypesAccepted>.  

• <OSOL>, <OSBL>, <OSPL> elements are to follow the formats specified respectively in 

Optimization Services Option Language, Optimization Services Benchmark Language and 

Optimization Services Process Language.  
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• The exact inclusion of all elements can only be finalized on the satisfactory development of 

the other OSXL’s.  

 
7.3.2 Optimization Services Process Language (OSPL)  
 

Background and Purposes 
 
Optimization Services Process Language (OSPL) is mainly used to keep runtime or dynamic 

online information about solvers, such as whether is solver is busy or not, and the number of 

optimization jobs waiting in the solver queue. To this end, it can be regarded as a counterpart to 

OSBL (see §7.3.1), which mainly keeps static solver information. It is possible, as discussed in §7.3.1, 

that OSPL can be embedded in OSIL. On the other hand it may not be feasible, due to the constantly 

changing nature of OSPL. Further details need to be investigated.  

 

Specification Descriptions 
 
Figure 7-13 shows an OSPL example. Following is a descriptive list for the <OSPL> element: 

 

 

Figure 7-13: OSPL example 

 
• <OSPL> contains two elements: <standard> and <specific>.  

• Both <standard> and <specific> contain a collection of <P> elements to contain individual 

online process information.  

• <P> elements under <standard> are standardized across solvers in terms of naming and 

usage.  
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• Individual solvers can have solver specific <P> elements under <specific>.  

• Each <P> element is required to have a name attribute and a value.  

• Each <P> element can have an optional <description> element.  

• <P> elements under <specific> are suggested to have a <description> element.  

• Exactly what other elements are to be contained in the <P> element depends on the meaning 

of each process information. But it should be kept as simple as possible. {This part needs 

further investigations.} 

 
7.3.3 Optimization Services Benchmark Language (OSBL) 
 

Background and Purposes 
 
The availability of more than one solver for many classes of problems makes the NEOS Server 

an obvious choice as a benchmarking tool. In fact the Server is potentially useful both in choosing a 

solver for a particular application and in comparing solvers generally. There are significant barriers to 

achieving these potentials, however, which motivate this part of the proposed research. 

Someone who has developed a new model, but who is not sure which of the several applicable 

solver packages to apply, is often advised that the only way to be sure is to carry out some test runs on 

typical problems instances. The straightforward way to do this is to send each test instance to each 

candidate solver. But as NEOS makes no guarantee that separate runs will be done on comparable 

machines under comparable conditions, the results may say little about the relative efficiency of the 

solvers. The results may say more about the reliability of the solvers, but even so they may be 

distorted by differences in the memory available on the workstations devoted to different solvers, or 

by differences in time limits imposed by the owners of different workstations on which NEOS Server 

jobs run. There is not necessarily any obvious way to compensate for the differences between runs, 

moreover, because in general each solver is available on any of a number of dissimilar workstations, 

among which one is selected by the Server according to the load at the time a job is submitted.  

As a first step in addressing these difficulties, NEOS has added a kind of “benchmarking solver.” 

A user tells this benchmarker which solvers are to be compared (Figure 7-14) and which problem (in 

AMPL or GAMS) they are to be compared on. The benchmarker then applies all the requested solvers 

– on the same computer – and returns concatenated listing of their results, along with a summary of 

problem statistics. For the case of smooth nonlinear problems, the benchmarker also optionally 

assesses the quality of each solver’s solution with respect to complementarity, feasibility and 

optimality tolerances (which may be adjusted by the user) [16]. This innovative approach to solution 

verification is independent of any correctness claims or statistics made by individual solvers. 

Benchmarking on only one problem can be misleading, so a number of sample problems from an 

application are often tested at the time. Benchmark tests on large sets of problems from diverse 

applications are also common, for purposes of comparing the overall quality of different solvers. For 
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this purpose, a concept of a performance profile [15], has been developed, which clearly shows the 

tradeoffs between speed and reliability of alternative solvers applied to a test problems set (Figure 

7-15). This device has been favorably received and is being increasingly adopted by researchers for 

their computational comparisons of new algorithmic ideas. We will investigate the incorporation of 

this approach into the NEOS Server environment, or more generally the Optimization Services 

framework, with the aim of producing a benchmarker that takes a set of problems as input and 

produces statistics and performance profiles for appropriate solvers. The benchmarking tools are 

intended to accept but not require guidance form the user, so that it is appropriate for us by 

practitioners as well as researchers. The measures of reliability reflected in the resulting performance 

profiles will make use of our verification approach to ensure that consistent standards are applied in 

comparing of solvers. The NEOS Server might then be able to automatically maintain benchmark 

results on available solvers for public test problem sets, re-running the benchmarker periodically to 

take account of updates or newly available solvers.  

Like analysis on optimization instances (see §7.1.5), our general framework for distributed 

optimization is not intended to benchmark the optimization solvers. Rather it relies on analysis work 

done by other researchers, and provides a framework specified under the Optimization Services 

Benchmark Language (OSBL) that enforces a standard XML output format of benchmark result, thus 

an automated discovery process can be carried under the Optimization Services inspection and 

discovery framework. Benchmark information is likely to be imbedded in Optimization Services 

Inspection Language (OSIL, §7.3.1).  
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Figure 7-14: Part of the web interface for the special benchmarking solver of the NEOS Server 

 
The collaborative research in this area will initially investigate connecting the analyzer described 

in §7.1.5 to the current benchmarker, so that the user is asked to choose only among solvers that are 

appropriate for the problem to be solved. Concurrently, the collaborative research will further test and 

refine the verification methods in [16] and will extend them to handle a broader variety of problems 

and situations. 
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Figure 7-15: A performance profile [15] summarizing benchmark results from four solvers on a 
variety of test problems. Toward the left the curves emphasize speed of the solvers, while toward 
the right they place greater emphasis on reliability. 

 
Specification Descriptions 
 

Figure 7-16 shows an OSBL example. Following is a descriptive list for the <OSBL> element:  

• <OSBL> probably does not need to contain two elements: <standard> and <specific>, since 

benchmarking is supposed to be carried out against one single authoritative benchmarker. 

• Contents in <OSBL> are to be designed by researchers who do benchmarking analysis.  
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Figure 7-16: OSBL example 

 
 
7.3.4 Optimization Services Query Language (OSQL) 
 

Background and Purposes 
 
Optimization Services Query Language (OSQL) is intended as an optimization query language to 

search for OSIL (see §7.3.1) documents in Optimization Services registries. It may not be needed 

depending on the final draft of XMLQuery from W3C. 

 

Specification Descriptions 
 
OSQL is in essence an XMLQuery. As of December 2003, it is still in progress under the 

auspices of the W3C’s XML Query working group. Specifications on OSQL need to wait after the 

W3C’s final recommendation.    
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8 CONCLUSIONS AND FUTURE WORK  
The research that we proposed is motivated by our vision of a next-generation distributed 

optimization, which we call “Optimization Services”, characterized by a set of four-letter acronyms of 

the form OSXL, where X is a defined alphabetical letter in our framework (Figure 8-1). Our 

Optimization Services design and framework is intended to deal with outstanding challenges of 

communication in large-scale optimization. This work addresses design as well as implementation 

issues by providing a general and unified framework for standardizing problem representation, 

automating problem analysis and solver choice, working with new web-service standards, scheduling 

computational resources, benchmarking solvers, and verification of results – all in the context of the 

special requirements of large-scale computational optimization. Our research in these areas is timely, 

being motivated by new standards for Web Services, grid-computing technologies, and the recent 

success of both the Virtual Prototyping Optimization System at Motorola and the NEOS Server at 

Argonne National Laboratory. 

 

 

Figure 8-1: Optimization Services X Languages, where X is to be replaced by any of the other 25 
letters that have been defined.  OSXL’s are used to specify the general and unified framework for 
distributed optimization proposed in this paper.  

 
 

We still need further improvement on Motorola Virtual Prototyping group’s intelligent 

optimization system, to be carried out in the summer of 2004. Optimization Services framework 

discussed in this paper may possibly follow a process similar to W3C’s model: starting from working 

group notes, through working drafts, candidate recommendations, proposed edited recommendations, 
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proposed recommendations and finalized with recommendations. But before there is such a possible 

process, we need to be more thoughtful and have to further elaborate on certain details. Our design 

and framework need be more general, systematic and prepared for scalability. More formal and tighter 

collaborations, under the proposed framework, with researchers in mentioned areas need to be 

established.  
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APPENDIX 
A.1   Optimization Services Template Language (OSTL) Schema 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <xs:include schemaLocation="./OSAL.xsd"/> 
 <xs:element name="OSML"> 
  <xs:annotation> 
   <xs:documentation>Opitimization Service Modeling Language schema    
 </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:choice> 
     <xs:group ref="mixedFormat" minOccurs="0"/> 
     <xs:element ref="singleFormat" minOccurs="0"/> 
    </xs:choice> 
    <xs:element name="OSAL"/> 
   </xs:sequence> 
   <xs:attribute name="format" type="OSMLFormatType" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:simpleType name="OSMLFormatType"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="MIXED"/> 
   <xs:enumeration value="FMLLP"/> 
   <xs:enumeration value="MPS"/> 
   <xs:enumeration value="SMPS"/> 
   <xs:enumeration value="AMPL.nl"/> 
   <xs:enumeration value="other"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:group name="mixedFormat"> 
  <xs:all> 
   <xs:element ref="variables"/> 
   <xs:element ref="objective" minOccurs="0"/> 
   <xs:element ref="constraints"/> 
  </xs:all> 
 </xs:group> 
 <xs:element name="variables"> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element name="variable" type="variableType"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="variableType"> 
  <xs:all> 
   <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
   <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
  </xs:all> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="type" default="continuous"> 
   <xs:simpleType> 
    <xs:restriction base="xs:string"> 
     <xs:enumeration value="interger"/> 
     <xs:enumeration value="binary"/> 
     <xs:enumeration value="continuous"/> 
    </xs:restriction> 
   </xs:simpleType> 
  </xs:attribute> 
 </xs:complexType> 
 <xs:element name="objective"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="direction" minOccurs="1" maxOccurs="1"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
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       <xs:enumeration value="minimize"/> 
       <xs:enumeration value="maximize"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="function" type="functionType"/> 
    <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
    <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
   </xs:sequence> 
   <xs:attribute name="name" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="constraints"> 
  <xs:complexType> 
   <xs:all minOccurs="0" maxOccurs="unbounded"> 
    <xs:element ref="constraint" type="constraintType"/> 
    <xs:element ref="constraintSet" type="constraintSetType"/> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="functionType"> 
  <xs:choice> 
   <xs:element name="webservice" type="WSType"/> 
   <xs:element name="binary" type="binaryType"/> 
   <xs:element name="MathML"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="WSType"> 
  <xs:sequence> 
   <xs:element name="URI"/> 
   <xs:element name="OSSL"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="binaryType"> 
  <xs:sequence> 
   <xs:element name="URI"/> 
   <xs:element name="OSSL"/> 
  </xs:sequence> 
  <xs:attribute name="language" type="xs:string" use="required"/> 
  <xs:attribute name="platform" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="constraintType"> 
  <xs:sequence> 
   <xs:element name="function" type="functionType"/> 
   <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
   <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/> 
  </xs:sequence> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:complexType name="constraintSetType"> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="type" type="xs:string" use="required"/> 
 </xs:complexType> 
 <xs:element name="singleFormat" type="xs:string"> 
 </xs:element> 
</xs:schema> 
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